Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2019

Open Access 01-12-2019 | Research

Supine, prone, right and left gravitational effects on human pulmonary circulation

Authors: Björn Wieslander, Joao Génio Ramos, Malin Ax, Johan Petersson, Martin Ugander

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2019

Login to get access

Abstract

Background

Body position can be optimized for pulmonary ventilation/perfusion matching during surgery and intensive care. However, positional effects upon distribution of pulmonary blood flow and vascular distensibility measured as the pulmonary blood volume variation have not been quantitatively characterized. In order to explore the potential clinical utility of body position as a modulator of pulmonary hemodynamics, we aimed to characterize gravitational effects upon distribution of pulmonary blood flow, pulmonary vascular distension, and pulmonary vascular distensibility.

Methods

Healthy subjects (n = 10) underwent phase contrast cardiovascular magnetic resonance (CMR) pulmonary artery and vein flow measurements in the supine, prone, and right/left lateral decubitus positions. For each lung, blood volume variation was calculated by subtracting venous from arterial flow per time frame.

Results

Body position did not change cardiac output (p = 0.84). There was no difference in blood flow between the superior and inferior pulmonary veins in the supine (p = 0.92) or prone body positions (p = 0.43). Compared to supine, pulmonary blood flow increased to the dependent lung in the lateral positions (16–33%, p = 0.002 for both). Venous but not arterial cross-sectional vessel area increased in both lungs when dependent compared to when non-dependent in the lateral positions (22–27%, p ≤ 0.01 for both). In contrast, compared to supine, distensibility increased in the non-dependent lung in the lateral positions (68–113%, p = 0.002 for both).

Conclusions

CMR demonstrates that in the lateral position, there is a shift in blood flow distribution, and venous but not arterial blood volume, from the non-dependent to the dependent lung. The non-dependent lung has a sizable pulmonary vascular distensibility reserve, possibly related to left atrial pressure. These results support the physiological basis for positioning patients with unilateral pulmonary pathology with the “good lung down” in the context of intensive care. Future studies are warranted to evaluate the diagnostic potential of these physiological insights into pulmonary hemodynamics, particularly in the context of non-invasively characterizing pulmonary hypertension.
Literature
1.
go back to reference Galvin I, Drummond GB, Nirmalan M. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth. 2007;98(4):420–8.CrossRef Galvin I, Drummond GB, Nirmalan M. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth. 2007;98(4):420–8.CrossRef
2.
go back to reference Ugander M, Kanski M, Engblom H, et al. Pulmonary blood volume variation decreases after myocardial infarction in pigs: a quantitative and noninvasive MR imaging measure of heart failure. Radiology. 2010;256(2):415–23.CrossRef Ugander M, Kanski M, Engblom H, et al. Pulmonary blood volume variation decreases after myocardial infarction in pigs: a quantitative and noninvasive MR imaging measure of heart failure. Radiology. 2010;256(2):415–23.CrossRef
3.
go back to reference Jögi J, Palmer J, Jonson B, Bajc M. Heart failure diagnostics based on ventilation/perfusion single photon emission computed tomography pattern and quantitative perfusion gradients. Nucl Med Commun. 2008;29(8):666–73.CrossRef Jögi J, Palmer J, Jonson B, Bajc M. Heart failure diagnostics based on ventilation/perfusion single photon emission computed tomography pattern and quantitative perfusion gradients. Nucl Med Commun. 2008;29(8):666–73.CrossRef
4.
go back to reference Mure M, Lindahl SG. Prone position improves gas exchange--but how? Acta Anaesthesiol Scand. 2001;45(2):150–9.PubMed Mure M, Lindahl SG. Prone position improves gas exchange--but how? Acta Anaesthesiol Scand. 2001;45(2):150–9.PubMed
5.
go back to reference Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRef Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRef
6.
go back to reference Benumof JL. Anesthesia for thoracic surgery. W. B. Saunders Company; 1995. Benumof JL. Anesthesia for thoracic surgery. W. B. Saunders Company; 1995.
7.
go back to reference Aitkenhead AR, Moppett IK, Thompson JP. Smith & Aitkenhead's Textbook of Anaesthesia. 6th edition ed: Churchill Livingstone, Elsevier 2013. Aitkenhead AR, Moppett IK, Thompson JP. Smith & Aitkenhead's Textbook of Anaesthesia. 6th edition ed: Churchill Livingstone, Elsevier 2013.
8.
go back to reference Kaneko K, Milic-Emili J, Dolovich MB, Dawson A, Bates DV. Regional distribution of ventilation and perfusion as a function of body position. J Appl Physiol. 1966;21(3):767–77.CrossRef Kaneko K, Milic-Emili J, Dolovich MB, Dawson A, Bates DV. Regional distribution of ventilation and perfusion as a function of body position. J Appl Physiol. 1966;21(3):767–77.CrossRef
9.
go back to reference Hedenstierna G, Baehrendtz S, Klingstedt C, et al. Ventilation and perfusion of each lung during differential ventilation with selective PEEP. Anesthesiology. 1984;61(4):369–76.CrossRef Hedenstierna G, Baehrendtz S, Klingstedt C, et al. Ventilation and perfusion of each lung during differential ventilation with selective PEEP. Anesthesiology. 1984;61(4):369–76.CrossRef
10.
go back to reference Rehder K, Wenthe FM, Sessler AD. Function of each lung during mechanical ventilation with ZEEP and with PEEP in man anesthetized with thiopental-meperidine. Anesthesiology. 1973;39(6):597–606.CrossRef Rehder K, Wenthe FM, Sessler AD. Function of each lung during mechanical ventilation with ZEEP and with PEEP in man anesthetized with thiopental-meperidine. Anesthesiology. 1973;39(6):597–606.CrossRef
11.
go back to reference Reed JH, Wood EH. Effect of body position on vertical distribution of pulmonary blood flow. J Appl Physiol. 1970;28(3):303–11.CrossRef Reed JH, Wood EH. Effect of body position on vertical distribution of pulmonary blood flow. J Appl Physiol. 1970;28(3):303–11.CrossRef
12.
go back to reference Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Protocols SfCMRBoTTFoS. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson. 2013;15:91.CrossRef Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Protocols SfCMRBoTTFoS. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson. 2013;15:91.CrossRef
13.
go back to reference Reiter U, Reiter G, Fuchsjäger M. MR phase-contrast imaging in pulmonary hypertension. Br J Radiol. 2016;89(1063):20150995.CrossRef Reiter U, Reiter G, Fuchsjäger M. MR phase-contrast imaging in pulmonary hypertension. Br J Radiol. 2016;89(1063):20150995.CrossRef
14.
go back to reference Reiter G, Reiter U, Kovacs G, Olschewski H, Fuchsjäger M. Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension. Radiology. 2015;275(1):71–9.CrossRef Reiter G, Reiter U, Kovacs G, Olschewski H, Fuchsjäger M. Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension. Radiology. 2015;275(1):71–9.CrossRef
15.
go back to reference Ugander M, Jense E, Arheden H. Pulmonary intravascular blood volume changes through the cardiac cycle in healthy volunteers studied by cardiovascular magnetic resonance measurements of arterial and venous flow. J Cardiovasc Magn Reson. 2009;11:42.CrossRef Ugander M, Jense E, Arheden H. Pulmonary intravascular blood volume changes through the cardiac cycle in healthy volunteers studied by cardiovascular magnetic resonance measurements of arterial and venous flow. J Cardiovasc Magn Reson. 2009;11:42.CrossRef
16.
go back to reference Kanski M, Arheden H, Wuttge DM, Bozovic G, Hesselstrand R, Ugander M. Pulmonary blood volume indexed to lung volume is reduced in newly diagnosed systemic sclerosis compared to normals--a prospective clinical cardiovascular magnetic resonance study addressing pulmonary vascular changes. J Cardiovasc Magn Reson. 2013;15:86.CrossRef Kanski M, Arheden H, Wuttge DM, Bozovic G, Hesselstrand R, Ugander M. Pulmonary blood volume indexed to lung volume is reduced in newly diagnosed systemic sclerosis compared to normals--a prospective clinical cardiovascular magnetic resonance study addressing pulmonary vascular changes. J Cardiovasc Magn Reson. 2013;15:86.CrossRef
17.
go back to reference Wieslander B, Ramos JG, Ax M, Petersson J, Ugander M. Supine, prone, right and left gravitational effects on human pulmonary vascular physiology (abstract). Paper presented at: CMR 2018 - the joint EuroCMR/SCMR meeting 2018; Barcelona. Spain. . Wieslander B, Ramos JG, Ax M, Petersson J, Ugander M. Supine, prone, right and left gravitational effects on human pulmonary vascular physiology (abstract). Paper presented at: CMR 2018 - the joint EuroCMR/SCMR meeting 2018; Barcelona. Spain. .
18.
go back to reference Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of segment--freely available software for cardiovascular image analysis. BMC Med Imaging. 2010;10:1.CrossRef Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of segment--freely available software for cardiovascular image analysis. BMC Med Imaging. 2010;10:1.CrossRef
19.
go back to reference Tufvesson J, Hedström E, Steding-Ehrenborg K, Carlsson M, Arheden H, Heiberg E. Validation and development of a new automatic algorithm for time-resolved segmentation of the left ventricle in magnetic resonance imaging. Biomed Res Int. 2015;2015:970357.CrossRef Tufvesson J, Hedström E, Steding-Ehrenborg K, Carlsson M, Arheden H, Heiberg E. Validation and development of a new automatic algorithm for time-resolved segmentation of the left ventricle in magnetic resonance imaging. Biomed Res Int. 2015;2015:970357.CrossRef
20.
go back to reference Wulff KE, Aulin I. The regional lung function in the lateral decubitus position during anesthesia and operation. Acta Anaesthesiol Scand. 1972;16(4):195–205.CrossRef Wulff KE, Aulin I. The regional lung function in the lateral decubitus position during anesthesia and operation. Acta Anaesthesiol Scand. 1972;16(4):195–205.CrossRef
21.
go back to reference Chang H, Lai-Fook SJ, Domino KB, et al. Spatial distribution of ventilation and perfusion in anesthetized dogs in lateral postures. J Appl Physiol (1985). 2002;92(2):745–62.CrossRef Chang H, Lai-Fook SJ, Domino KB, et al. Spatial distribution of ventilation and perfusion in anesthetized dogs in lateral postures. J Appl Physiol (1985). 2002;92(2):745–62.CrossRef
22.
go back to reference Denlinger JK, Kallos T, Marshall BE. Pulmonary blood flow distribution in man anesthetized in the lateral position. Anesth Analg. 1972;51(2):260–3.CrossRef Denlinger JK, Kallos T, Marshall BE. Pulmonary blood flow distribution in man anesthetized in the lateral position. Anesth Analg. 1972;51(2):260–3.CrossRef
23.
go back to reference Musch G, Layfield JD, Harris RS, et al. Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J Appl Physiol (1985). 2002;93(5):1841–51.CrossRef Musch G, Layfield JD, Harris RS, et al. Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J Appl Physiol (1985). 2002;93(5):1841–51.CrossRef
24.
go back to reference Oehme L, Zöphel K, Golgor E, et al. Quantitative analysis of regional lung ventilation and perfusion PET with (68) Ga-labelled tracers. Nucl Med Commun. 2014;35(5):501–10.CrossRef Oehme L, Zöphel K, Golgor E, et al. Quantitative analysis of regional lung ventilation and perfusion PET with (68) Ga-labelled tracers. Nucl Med Commun. 2014;35(5):501–10.CrossRef
25.
go back to reference Petersson J, Rohdin M, Sánchez-Crespo A, et al. Posture primarily affects lung tissue distribution with minor effect on blood flow and ventilation. Respir Physiol Neurobiol. 2007;156(3):293–303.CrossRef Petersson J, Rohdin M, Sánchez-Crespo A, et al. Posture primarily affects lung tissue distribution with minor effect on blood flow and ventilation. Respir Physiol Neurobiol. 2007;156(3):293–303.CrossRef
26.
go back to reference West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.CrossRef West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.CrossRef
27.
go back to reference Glenny RW, Robertson HT. Determinants of pulmonary blood flow distribution. Compr Physiol. 2011;1(1):39–59.PubMed Glenny RW, Robertson HT. Determinants of pulmonary blood flow distribution. Compr Physiol. 2011;1(1):39–59.PubMed
28.
go back to reference Hewitt N, Bucknall T, Faraone NM. Lateral positioning for critically ill adult patients. Cochrane Database Syst Rev. 2016;5:CD007205. Hewitt N, Bucknall T, Faraone NM. Lateral positioning for critically ill adult patients. Cochrane Database Syst Rev. 2016;5:CD007205.
Metadata
Title
Supine, prone, right and left gravitational effects on human pulmonary circulation
Authors
Björn Wieslander
Joao Génio Ramos
Malin Ax
Johan Petersson
Martin Ugander
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2019
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-019-0577-9

Other articles of this Issue 1/2019

Journal of Cardiovascular Magnetic Resonance 1/2019 Go to the issue