Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Suicide | Short report

Brain HIV-1 latently-infected reservoirs targeted by the suicide gene strategy

Authors: Sepideh Saeb, Mehrdad Ravanshad, Mahmoud Reza Pourkarim, Fadoua Daouad, Kazem Baesi, Olivier Rohr, Clémentine Wallet, Christian Schwartz

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Reducing the pool of HIV-1 reservoirs in patients is a must to achieve functional cure. The most prominent HIV-1 cell reservoirs are resting CD4 + T cells and brain derived microglial cells. Infected microglial cells are believed to be the source of peripheral tissues reseedings and the emergence of drug resistance. Clearing infected cells from the brain is therefore crucial. However, many characteristics of microglial cells and the central nervous system make extremely difficult their eradication from brain reservoirs. Current methods, such as the “shock and kill”, the “block and lock” and gene editing strategies cannot override these difficulties. Therefore, new strategies have to be designed when considering the elimination of brain reservoirs. We set up an original gene suicide strategy using latently infected microglial cells as model cells. In this paper we provide proof of concept of this strategy.
Literature
1.
go back to reference García M, Buzón MJ, Benito JM, Rallón N. Peering into the HIV reservoir. Rev Med Virol. 2018;28:e1981.CrossRef García M, Buzón MJ, Benito JM, Rallón N. Peering into the HIV reservoir. Rev Med Virol. 2018;28:e1981.CrossRef
2.
go back to reference Sung JM, Margolis DM. HIV Persistence on Antiretroviral Therapy and Barriers to a Cure. Adv Exp Med Biol. 2018. p. 165–85. Sung JM, Margolis DM. HIV Persistence on Antiretroviral Therapy and Barriers to a Cure. Adv Exp Med Biol. 2018. p. 165–85.
3.
4.
go back to reference Le Douce V, Ait-Amar A, Forouzan Far F, Fahmi F, Quiel J, El Mekdad H, et al. Improving combination antiretroviral therapy by targeting HIV-1 gene transcription. Expert Opin Ther Targets. 2016;20:1311–24.CrossRef Le Douce V, Ait-Amar A, Forouzan Far F, Fahmi F, Quiel J, El Mekdad H, et al. Improving combination antiretroviral therapy by targeting HIV-1 gene transcription. Expert Opin Ther Targets. 2016;20:1311–24.CrossRef
5.
go back to reference Le Douce V, Cherrier T, Riclet R, Rohr O, Schwartz C. The many lives of CTIP2: from AIDS to cancer and cardiac hypertrophy. J Cell Physiol. 2014;229:533–7.CrossRef Le Douce V, Cherrier T, Riclet R, Rohr O, Schwartz C. The many lives of CTIP2: from AIDS to cancer and cardiac hypertrophy. J Cell Physiol. 2014;229:533–7.CrossRef
6.
go back to reference Le Douce V, Forouzanfar F, Eilebrecht S, Van Driessche B, Ait-Ammar A, Verdikt R, et al. HIC1 controls cellular- and HIV-1- gene transcription via interactions with CTIP2 and HMGA1. Sci Rep. 2016;6:34920.CrossRef Le Douce V, Forouzanfar F, Eilebrecht S, Van Driessche B, Ait-Ammar A, Verdikt R, et al. HIC1 controls cellular- and HIV-1- gene transcription via interactions with CTIP2 and HMGA1. Sci Rep. 2016;6:34920.CrossRef
7.
go back to reference Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, et al. Targeting the brain reservoirs: toward an HIV cure. Front Immunol. 2016;7:397.CrossRef Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, et al. Targeting the brain reservoirs: toward an HIV cure. Front Immunol. 2016;7:397.CrossRef
9.
go back to reference Le Douce V, Colin L, Redel L, Cherrier T, Herbein G, Aunis D, et al. LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing. Nucl Acids Res. 2012;40:1904–15.CrossRef Le Douce V, Colin L, Redel L, Cherrier T, Herbein G, Aunis D, et al. LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing. Nucl Acids Res. 2012;40:1904–15.CrossRef
10.
go back to reference Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, et al. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. Embo J. 2007;26:412–23.CrossRef Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, et al. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. Embo J. 2007;26:412–23.CrossRef
11.
go back to reference Cherrier T, Le Douce V, Eilebrecht S, Riclet R, Marban C, Dequiedt F, et al. CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci. 2013;110:12655–60.CrossRef Cherrier T, Le Douce V, Eilebrecht S, Riclet R, Marban C, Dequiedt F, et al. CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci. 2013;110:12655–60.CrossRef
12.
go back to reference Eilebrecht S, Le Douce V, Riclet R, Targat B, Hallay H, Van Driessche B, et al. HMGA1 recruits CTIP2-repressed P-TEFb to the HIV-1 and cellular target promoters. Nucl Acids Res. 2014;42:4962–71.CrossRef Eilebrecht S, Le Douce V, Riclet R, Targat B, Hallay H, Van Driessche B, et al. HMGA1 recruits CTIP2-repressed P-TEFb to the HIV-1 and cellular target promoters. Nucl Acids Res. 2014;42:4962–71.CrossRef
13.
go back to reference Schwartz C, Bouchat S, Marban C, Gautier V, Van Lint C, Rohr O, et al. On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol. 2017;146:10–22.CrossRef Schwartz C, Bouchat S, Marban C, Gautier V, Van Lint C, Rohr O, et al. On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol. 2017;146:10–22.CrossRef
14.
go back to reference Eisfeld C, Reichelt D, Evers S, Husstedt I. CSF penetration by antiretroviral drugs. CNS Drugs. 2013;27:31–55.CrossRef Eisfeld C, Reichelt D, Evers S, Husstedt I. CSF penetration by antiretroviral drugs. CNS Drugs. 2013;27:31–55.CrossRef
15.
go back to reference Watters SA, Mlcochova P, Gupta RK. Macrophages: the neglected barrier to eradication. Curr Opin Infect Dis. 2013;26:561–6.CrossRef Watters SA, Mlcochova P, Gupta RK. Macrophages: the neglected barrier to eradication. Curr Opin Infect Dis. 2013;26:561–6.CrossRef
16.
go back to reference Nath A, Clements JE. Eradication of HIV from the brain: reasons for pause. AIDS. 2011. p. 577–80. Nath A, Clements JE. Eradication of HIV from the brain: reasons for pause. AIDS. 2011. p. 577–80.
17.
go back to reference Yadav A, Collman RG. CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol. 2009;4:430–47.CrossRef Yadav A, Collman RG. CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol. 2009;4:430–47.CrossRef
18.
go back to reference Darcis G, Van Driessche B, Van Lint C. HIV Latency: Should We Shock or Lock? Trends Immunol. 2017;38:217–28.CrossRef Darcis G, Van Driessche B, Van Lint C. HIV Latency: Should We Shock or Lock? Trends Immunol. 2017;38:217–28.CrossRef
19.
go back to reference Elsheikh MM, Tang Y, Li D, Jiang G. Deep latency: A new insight into a functional HIV cure. EBioMedicine. 2019. Elsheikh MM, Tang Y, Li D, Jiang G. Deep latency: A new insight into a functional HIV cure. EBioMedicine. 2019.
20.
go back to reference Mousseau G, Aneja R, Clementz MA, Mediouni S, Lima NS, Haregot A, et al. Resistance to the tat inhibitor didehydro-cortistatin a is mediated by heightened basal HIV-1 transcription. MBio. Am Soc Microbiol; 2019;10. Mousseau G, Aneja R, Clementz MA, Mediouni S, Lima NS, Haregot A, et al. Resistance to the tat inhibitor didehydro-cortistatin a is mediated by heightened basal HIV-1 transcription. MBio. Am Soc Microbiol; 2019;10.
21.
go back to reference Check Hayden E. Stem-cell transplants may purge HIV. Nature. Springer Science and Business Media LLC; 2013 [cited 2021 Apr 14]. Check Hayden E. Stem-cell transplants may purge HIV. Nature. Springer Science and Business Media LLC; 2013 [cited 2021 Apr 14].
22.
go back to reference Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front. Cell. Infect. Microbiol. Frontiers Media S.A.; 2019. Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front. Cell. Infect. Microbiol. Frontiers Media S.A.; 2019.
23.
go back to reference Yee J-K. Off-target effects of engineered nucleases. FEBS J. 2016;283:3239–48.CrossRef Yee J-K. Off-target effects of engineered nucleases. FEBS J. 2016;283:3239–48.CrossRef
24.
go back to reference Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, et al. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther Nature Publish Group. 2016;23:690–5. Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, et al. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther Nature Publish Group. 2016;23:690–5.
25.
go back to reference Yoder KE, Bundschuh R. Host double strand break repair generates HIV-1 strains resistant to CRISPR/Cas9. Sci Rep. 2016;6:29530.CrossRef Yoder KE, Bundschuh R. Host double strand break repair generates HIV-1 strains resistant to CRISPR/Cas9. Sci Rep. 2016;6:29530.CrossRef
26.
go back to reference Liang C, Wainberg MA, Das AT, Berkhout B. CRISPR/Cas9: a double-edged sword when used to combat HIV infection. Retrovirology. 2016;13:37.CrossRef Liang C, Wainberg MA, Das AT, Berkhout B. CRISPR/Cas9: a double-edged sword when used to combat HIV infection. Retrovirology. 2016;13:37.CrossRef
27.
go back to reference Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, et al. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016;15:481–9.CrossRef Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, et al. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016;15:481–9.CrossRef
28.
go back to reference Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther. 2016;24:522–6.CrossRef Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther. 2016;24:522–6.CrossRef
29.
go back to reference Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas based antiviral strategies against HIV-1. Virus Res. 2018;244:321–32.CrossRef Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas based antiviral strategies against HIV-1. Virus Res. 2018;244:321–32.CrossRef
30.
go back to reference Zhang Y, Yin C, Zhang T, Li F, Yang W, Kaminski R, et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep. 2015;5:16277.CrossRef Zhang Y, Yin C, Zhang T, Li F, Yang W, Kaminski R, et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep. 2015;5:16277.CrossRef
31.
go back to reference Cary DC, Matija Peterlin B. Open Peer Review. 2016. Cary DC, Matija Peterlin B. Open Peer Review. 2016.
32.
go back to reference Limsirichai P, Gaj T, Schaffer DV. CRISPR-mediated activation of latent HIV-1 expression. Mol Ther. 2016;24:499–507.CrossRef Limsirichai P, Gaj T, Schaffer DV. CRISPR-mediated activation of latent HIV-1 expression. Mol Ther. 2016;24:499–507.CrossRef
33.
go back to reference Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, et al. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front. Cell. Infect. Microbiol. Frontiers Media S.A.; 2019. Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, et al. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front. Cell. Infect. Microbiol. Frontiers Media S.A.; 2019.
34.
go back to reference Düzgüneş N. Origins of suicide gene therapy. Methods Mol Biol. Humana Press Inc.; 2019. p. 1–9. Düzgüneş N. Origins of suicide gene therapy. Methods Mol Biol. Humana Press Inc.; 2019. p. 1–9.
35.
go back to reference Düzgüneş N, Konopka K. Eradication of human immunodeficiency virus type-1 (HIV-1)-infected cells. Pharmaceutics. MDPI AG; 2019. Düzgüneş N, Konopka K. Eradication of human immunodeficiency virus type-1 (HIV-1)-infected cells. Pharmaceutics. MDPI AG; 2019.
36.
go back to reference Huelsmann PM, Hofmann AD, Knoepfel SA, Popp J, Rauch P, Di Giallonardo F, et al. A suicide gene approach using the human pro-apoptotic protein tBid inhibits HIV-1 replication. BMC Biotechnol; 2011;11. Huelsmann PM, Hofmann AD, Knoepfel SA, Popp J, Rauch P, Di Giallonardo F, et al. A suicide gene approach using the human pro-apoptotic protein tBid inhibits HIV-1 replication. BMC Biotechnol; 2011;11.
37.
go back to reference Garg H, Joshi A. Conditional cytotoxic anti-HIV gene therapy for selectable cell modification. Hum Gene Ther. 2016;27:400–15.CrossRef Garg H, Joshi A. Conditional cytotoxic anti-HIV gene therapy for selectable cell modification. Hum Gene Ther. 2016;27:400–15.CrossRef
38.
go back to reference Pattali R, Mou Y, Li XJ. AAV9 Vector: a Novel modality in gene therapy for spinal muscular atrophy. Gene Ther. Nature Publishing Group; 2019. p. 287–95. Pattali R, Mou Y, Li XJ. AAV9 Vector: a Novel modality in gene therapy for spinal muscular atrophy. Gene Ther. Nature Publishing Group; 2019. p. 287–95.
39.
go back to reference Duan D. Systemic delivery of adeno-associated viral vectors. Curr. Opin. Virol. Elsevier B.V.; 2016. p. 16–25. Duan D. Systemic delivery of adeno-associated viral vectors. Curr. Opin. Virol. Elsevier B.V.; 2016. p. 16–25.
40.
go back to reference Lykken EA, Shyng C, Edwards RJ, Rozenberg A, Gray SJ. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J. Neurodev. Disord. BioMed Central Ltd.; 2018. Lykken EA, Shyng C, Edwards RJ, Rozenberg A, Gray SJ. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J. Neurodev. Disord. BioMed Central Ltd.; 2018.
41.
go back to reference Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547–51.CrossRef Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547–51.CrossRef
42.
go back to reference Sheng J, Ruedl C, Karjalainen K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity. 2015;43:382–93.CrossRef Sheng J, Ruedl C, Karjalainen K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity. 2015;43:382–93.CrossRef
43.
go back to reference Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K, et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 2017;20:779–84.CrossRef Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K, et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 2017;20:779–84.CrossRef
44.
go back to reference Abner E, Jordan A. HIV “shock and kill” therapy: in need of revision. Antiviral Res. 2019;166:19–34.CrossRef Abner E, Jordan A. HIV “shock and kill” therapy: in need of revision. Antiviral Res. 2019;166:19–34.CrossRef
45.
go back to reference Ait-Ammar A*, Kula A*, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A RO and VLC (*equal contribution). Current status of LRAs facing the heterogeneity of HIV-1 cellular and tissue reservoirs. Ait-Ammar A*, Kula A*, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A RO and VLC (*equal contribution). Current status of LRAs facing the heterogeneity of HIV-1 cellular and tissue reservoirs.
46.
go back to reference Chauhan A. Enigma of HIV-1 latent infection in astrocytes: an in-vitro study using protein kinase C agonist as a latency reversing agent. Microbes Infect. 2015;17:651–9.CrossRef Chauhan A. Enigma of HIV-1 latent infection in astrocytes: an in-vitro study using protein kinase C agonist as a latency reversing agent. Microbes Infect. 2015;17:651–9.CrossRef
47.
go back to reference Gray LR, On H, Roberts E, Lu HK, Moso MA, Raison JA, et al. Toxicity and in vitro activity of HIV-1 latency-reversing agents in primary CNS cells. J Neurovirol. 2016. Gray LR, On H, Roberts E, Lu HK, Moso MA, Raison JA, et al. Toxicity and in vitro activity of HIV-1 latency-reversing agents in primary CNS cells. J Neurovirol. 2016.
48.
go back to reference Rasmussen TA, Schmeltz Søgaard O, Brinkmann C, Wightman F, Lewin SR, Melchjorsen J, et al. Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother. 2013;9:993–1001.CrossRef Rasmussen TA, Schmeltz Søgaard O, Brinkmann C, Wightman F, Lewin SR, Melchjorsen J, et al. Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother. 2013;9:993–1001.CrossRef
49.
go back to reference Banerjee C, Archin N, Michaels D, Belkina AC, Denis GV, Bradner J, et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol. 2012;92:1147–54.CrossRef Banerjee C, Archin N, Michaels D, Belkina AC, Denis GV, Bradner J, et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol. 2012;92:1147–54.CrossRef
50.
go back to reference Díaz L, Martínez-Bonet M, Sánchez J, Fernández-Pineda A, Jiménez JL, Muñoz E, et al. Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC and NF-ĸB-dependent mechanism. Sci Rep. 2015;5:12442.CrossRef Díaz L, Martínez-Bonet M, Sánchez J, Fernández-Pineda A, Jiménez JL, Muñoz E, et al. Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC and NF-ĸB-dependent mechanism. Sci Rep. 2015;5:12442.CrossRef
52.
go back to reference Saraiva J, Nobre RJ, Pereira de Almeida L. Gene therapy for the CNS using AAVs: The impact of systemic delivery by AAV9. J. Control. Release. Elsevier B.V.; 2016. p. 94–109. Saraiva J, Nobre RJ, Pereira de Almeida L. Gene therapy for the CNS using AAVs: The impact of systemic delivery by AAV9. J. Control. Release. Elsevier B.V.; 2016. p. 94–109.
53.
go back to reference Merkel SF, Andrews AM, Lutton EM, Mu D, Hudry E, Hyman BT, et al. Trafficking of adeno-associated virus vectors across a model of the blood–brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. J Neurochem. 2017;140:216–30.CrossRef Merkel SF, Andrews AM, Lutton EM, Mu D, Hudry E, Hyman BT, et al. Trafficking of adeno-associated virus vectors across a model of the blood–brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. J Neurochem. 2017;140:216–30.CrossRef
54.
go back to reference Wirth B, Barkats M, Martinat C, Sendtner M, Gillingwater TH. Moving towards treatments for spinal muscular atrophy: Hopes and limits. Expert Opin. Emerg. Drugs. Taylor and Francis Ltd; 2015. p. 353–6. Wirth B, Barkats M, Martinat C, Sendtner M, Gillingwater TH. Moving towards treatments for spinal muscular atrophy: Hopes and limits. Expert Opin. Emerg. Drugs. Taylor and Francis Ltd; 2015. p. 353–6.
55.
go back to reference Zhang X, He T, Chai Z, Samulski RJ, Li C. Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials. 2018;176:71–83.CrossRef Zhang X, He T, Chai Z, Samulski RJ, Li C. Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials. 2018;176:71–83.CrossRef
Metadata
Title
Brain HIV-1 latently-infected reservoirs targeted by the suicide gene strategy
Authors
Sepideh Saeb
Mehrdad Ravanshad
Mahmoud Reza Pourkarim
Fadoua Daouad
Kazem Baesi
Olivier Rohr
Clémentine Wallet
Christian Schwartz
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01584-2

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine