Skip to main content
Top
Published in: Heart and Vessels 6/2019

01-06-2019 | Sudden Cardiac Death | Original Article

Involvement of sphingosine-1-phosphate receptors 2/3 in IR-induced sudden cardiac death

Authors: Xiaojia Zhang, Deqing Chen, Jiaqi Wang, Jinding Liu, Hualin Guo, Gengqian Zhang

Published in: Heart and Vessels | Issue 6/2019

Login to get access

Abstract

It has been demonstrated that S1P receptors affect heart ischaemia–reperfusion (IR) induced injury. However, whether S1P receptors affect IR-induced cardiac death has not been investigated. The aim of this paper is to demonstrate the role of S1P receptors in IR-induced cardiac death. Healthy adult male Sprague–Dawley rats were assigned to the following groups: non-operation control group, sham operation group, IR group, IR group pretreated with DMSO, IR group pretreated with S1P3 agonist, IR group pretreated with an antagonist of S1P3, IR group pretreated with S1P2 and S1P3 antagonists, IR group pretreated with heptanol and antagonists of S1P2/3, and IR group pretreated with Gap26 and antagonists of S1P2/3 (heptanol acts as a Cx43 uncoupler and the mimic peptide Gap26 as Cx43 blocker). The groups with S1P2 or S1P3 agonist application before reperfusion were used to assess whether these can be used for therapy of IR. The haemodynamics, electrocardiograms (ECG), infarction area, and mortality rates were recorded. Immunohistological connexin 43 (Cx43) expression in the heart was detected in each group. Blocking S1P2/3 receptors with specific antagonists resulted in an increment of IR-induced mortality, increased infarction size, redistribution of Cx43 expression, as well as affecting the heart function. The infarction size, heart function, and mortality were totally or partially restored in the S1P2, S1P3 agonist-pretreated IR group, and the heptanol/Gap26-treated S1P2/3-blocked IR group. The S1P receptor S1P2/3 and Cx43 are involved in the IR-induced cardiac death.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chitnis N, Vooturi S, Hygriv Rao B (2014) Sudden cardiac death early after ST elevation myocardial infarction with and without severe left ventricular dysfunction. Indian Heart J 66:569–573CrossRefPubMedPubMedCentral Chitnis N, Vooturi S, Hygriv Rao B (2014) Sudden cardiac death early after ST elevation myocardial infarction with and without severe left ventricular dysfunction. Indian Heart J 66:569–573CrossRefPubMedPubMedCentral
3.
go back to reference Southerland EM, Gibbons DD, Smith SB, Sipe A, Williams CA, Beaumont E, Armour JA, Foreman RD, Ardell JL (2012) Activated cranial cervical cord neurons affect left ventricular infarct size and the potential for sudden cardiac death. Auton Neurosci 169:34–42CrossRefPubMedPubMedCentral Southerland EM, Gibbons DD, Smith SB, Sipe A, Williams CA, Beaumont E, Armour JA, Foreman RD, Ardell JL (2012) Activated cranial cervical cord neurons affect left ventricular infarct size and the potential for sudden cardiac death. Auton Neurosci 169:34–42CrossRefPubMedPubMedCentral
4.
go back to reference Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609CrossRefPubMed Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609CrossRefPubMed
6.
go back to reference Badimon JJ, Ibanez B (2010) Increasing high-density lipoprotein as a therapeutic target in atherothrombotic disease. Rev Esp Cardiol 63:323–333CrossRefPubMed Badimon JJ, Ibanez B (2010) Increasing high-density lipoprotein as a therapeutic target in atherothrombotic disease. Rev Esp Cardiol 63:323–333CrossRefPubMed
7.
go back to reference Santos-Gallego CG, Badimon JJ, Rosenson RS (2014) Beginning to understand high-density lipoproteins. Endocrinol Metab Clin North Am 43:913–947CrossRefPubMed Santos-Gallego CG, Badimon JJ, Rosenson RS (2014) Beginning to understand high-density lipoproteins. Endocrinol Metab Clin North Am 43:913–947CrossRefPubMed
8.
go back to reference Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409CrossRefPubMed Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409CrossRefPubMed
9.
go back to reference Means CK, Xiao CY, Li Z, Zhang T, Omens JH, Ishii I, Chun J, Brown JH (2007) Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 292:H2944–H2951CrossRefPubMed Means CK, Xiao CY, Li Z, Zhang T, Omens JH, Ishii I, Chun J, Brown JH (2007) Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 292:H2944–H2951CrossRefPubMed
10.
go back to reference Vessey DA, Kelley M, Li L, Huang Y (2009) Sphingosine protects aging hearts from ischemia/reperfusion injury: superiority to sphingosine 1-phosphate and ischemic pre- and post-conditioning. Oxid Med Cell Longev 2:146–151CrossRefPubMedPubMedCentral Vessey DA, Kelley M, Li L, Huang Y (2009) Sphingosine protects aging hearts from ischemia/reperfusion injury: superiority to sphingosine 1-phosphate and ischemic pre- and post-conditioning. Oxid Med Cell Longev 2:146–151CrossRefPubMedPubMedCentral
11.
go back to reference Santos-Gallego CG, Vahl TP, Goliasch G, Picatoste B, Arias T, Ishikawa K, Njerve IU, Sanz J, Narula J, Sengupta PP, Hajjar RJ, Fuster V, Badimon JJ (2016) Sphingosine-1-phosphate receptor agonist fingolimod increases myocardial salvage and decreases adverse postinfarction left ventricular remodeling in a porcine model of ischemia/reperfusion. Circulation 133:954–966CrossRefPubMed Santos-Gallego CG, Vahl TP, Goliasch G, Picatoste B, Arias T, Ishikawa K, Njerve IU, Sanz J, Narula J, Sengupta PP, Hajjar RJ, Fuster V, Badimon JJ (2016) Sphingosine-1-phosphate receptor agonist fingolimod increases myocardial salvage and decreases adverse postinfarction left ventricular remodeling in a porcine model of ischemia/reperfusion. Circulation 133:954–966CrossRefPubMed
12.
go back to reference Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, Dahlback B (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 108:9613–9618CrossRefPubMedPubMedCentral Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, Dahlback B (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 108:9613–9618CrossRefPubMedPubMedCentral
13.
go back to reference Badimon JJ, Santos-Gallego CG (2015) HDL dysfunction: is the answer in the Sphinx's riddle? J Am Coll Cardiol 66:1486–1488CrossRefPubMed Badimon JJ, Santos-Gallego CG (2015) HDL dysfunction: is the answer in the Sphinx's riddle? J Am Coll Cardiol 66:1486–1488CrossRefPubMed
14.
go back to reference Sattler K, Graler M, Keul P, Weske S, Reimann CM, Jindrova H, Kleinbongard P, Sabbadini R, Brocker-Preuss M, Erbel R, Heusch G, Levkau B (2015) Defects of high-density lipoproteins in coronary artery disease caused by low sphingosine-1-phosphate content: correction by sphingosine-1-phosphate-loading. J Am Coll Cardiol 66:1470–1485CrossRefPubMed Sattler K, Graler M, Keul P, Weske S, Reimann CM, Jindrova H, Kleinbongard P, Sabbadini R, Brocker-Preuss M, Erbel R, Heusch G, Levkau B (2015) Defects of high-density lipoproteins in coronary artery disease caused by low sphingosine-1-phosphate content: correction by sphingosine-1-phosphate-loading. J Am Coll Cardiol 66:1470–1485CrossRefPubMed
15.
go back to reference Ahmed N, Linardi D, Decimo I, Mehboob R, Gebrie MA, Innamorati G, Luciani GB, Faggian G, Rungatscher A (2017) Characterization and expression of sphingosine 1-phosphate receptors in human and rat heart. Front Pharmacol 8:312CrossRefPubMedPubMedCentral Ahmed N, Linardi D, Decimo I, Mehboob R, Gebrie MA, Innamorati G, Luciani GB, Faggian G, Rungatscher A (2017) Characterization and expression of sphingosine 1-phosphate receptors in human and rat heart. Front Pharmacol 8:312CrossRefPubMedPubMedCentral
16.
go back to reference Zhang GQ, Liang Z, Zhang XJ (2014) Sphingosine-1-phosphate receptors respond differently to early myocardial ischemia and ischemia-reperfusion in vivo. Sheng Li Xue Bao 66:169–174PubMed Zhang GQ, Liang Z, Zhang XJ (2014) Sphingosine-1-phosphate receptors respond differently to early myocardial ischemia and ischemia-reperfusion in vivo. Sheng Li Xue Bao 66:169–174PubMed
17.
go back to reference Somers SJ, Frias M, Lacerda L, Opie LH, Lecour S (2012) Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection. Cardiovasc Drugs Ther 26:227–237CrossRefPubMed Somers SJ, Frias M, Lacerda L, Opie LH, Lecour S (2012) Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection. Cardiovasc Drugs Ther 26:227–237CrossRefPubMed
18.
go back to reference Morel S, Frias MA, Rosker C, James RW, Rohr S, Kwak BR (2012) The natural cardioprotective particle HDL modulates connexin43 gap junction channels. Cardiovasc Res 93:41–49CrossRefPubMed Morel S, Frias MA, Rosker C, James RW, Rohr S, Kwak BR (2012) The natural cardioprotective particle HDL modulates connexin43 gap junction channels. Cardiovasc Res 93:41–49CrossRefPubMed
19.
go back to reference Veenstra RD (2012) Sphingosine-1-phosphate signals the way for Cx43-mediated cardioprotection. Cardiovasc Res 93:8–9CrossRefPubMed Veenstra RD (2012) Sphingosine-1-phosphate signals the way for Cx43-mediated cardioprotection. Cardiovasc Res 93:8–9CrossRefPubMed
20.
go back to reference Jain SK, Schuessler RB, Saffitz JE (2003) Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ Res 92:1138–1144CrossRefPubMed Jain SK, Schuessler RB, Saffitz JE (2003) Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ Res 92:1138–1144CrossRefPubMed
21.
22.
go back to reference Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A, Hirst-Jensen BJ, Duffy HS, Sorgen PL (2009) Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res 104:1103–1112CrossRefPubMedPubMedCentral Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A, Hirst-Jensen BJ, Duffy HS, Sorgen PL (2009) Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res 104:1103–1112CrossRefPubMedPubMedCentral
23.
go back to reference Hesketh GG, Shah MH, Halperin VL, Cooke CA, Akar FG, Yen TE, Kass DA, Machamer CE, Van Eyk JE, Tomaselli GF (2010) Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circ Res 106:1153–1163CrossRefPubMedPubMedCentral Hesketh GG, Shah MH, Halperin VL, Cooke CA, Akar FG, Yen TE, Kass DA, Machamer CE, Van Eyk JE, Tomaselli GF (2010) Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circ Res 106:1153–1163CrossRefPubMedPubMedCentral
24.
go back to reference Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI (2001) Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 88:333–339CrossRefPubMedPubMedCentral Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI (2001) Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 88:333–339CrossRefPubMedPubMedCentral
25.
go back to reference Manjarrez-Marmolejo J, Franco-Perez J (2016) Gap junction blockers: an overview of their effects on induced seizures in animal models. Curr Neuropharmacol 14:759–771CrossRefPubMedPubMedCentral Manjarrez-Marmolejo J, Franco-Perez J (2016) Gap junction blockers: an overview of their effects on induced seizures in animal models. Curr Neuropharmacol 14:759–771CrossRefPubMedPubMedCentral
26.
go back to reference Rodriguez-Sinovas A, Cabestrero A, Lopez D, Torre I, Morente M, Abellan A, Miro E, Ruiz-Meana M, Garcia-Dorado D (2007) The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Prog Biophys Mol Biol 94:219–232CrossRefPubMed Rodriguez-Sinovas A, Cabestrero A, Lopez D, Torre I, Morente M, Abellan A, Miro E, Ruiz-Meana M, Garcia-Dorado D (2007) The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Prog Biophys Mol Biol 94:219–232CrossRefPubMed
27.
go back to reference Walker MJ, Curtis MJ, Hearse DJ, Campbell RW, Janse MJ, Yellon DM, Cobbe SM, Coker SJ, Harness JB, Harron DW et al (1988) The Lambeth conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Res 22:447–455CrossRefPubMed Walker MJ, Curtis MJ, Hearse DJ, Campbell RW, Janse MJ, Yellon DM, Cobbe SM, Coker SJ, Harness JB, Harron DW et al (1988) The Lambeth conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Res 22:447–455CrossRefPubMed
28.
go back to reference Lee KH (2017) Expressional changes of connexin isoform genes in the rat caput epididymis exposed to flutamide or estradiol benzoate at the early postnatal age. Dev Reprod 21:317–325CrossRefPubMedPubMedCentral Lee KH (2017) Expressional changes of connexin isoform genes in the rat caput epididymis exposed to flutamide or estradiol benzoate at the early postnatal age. Dev Reprod 21:317–325CrossRefPubMedPubMedCentral
29.
go back to reference Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J (2004) Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 62:426–436CrossRefPubMed Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J (2004) Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 62:426–436CrossRefPubMed
30.
go back to reference Palee S, Weerateerangkul P, Chinda K, Chattipakorn SC, Chattipakorn N (2013) Mechanisms responsible for beneficial and adverse effects of rosiglitazone in a rat model of acute cardiac ischaemia–reperfusion. Exp Physiol 98:1028–1037CrossRefPubMed Palee S, Weerateerangkul P, Chinda K, Chattipakorn SC, Chattipakorn N (2013) Mechanisms responsible for beneficial and adverse effects of rosiglitazone in a rat model of acute cardiac ischaemia–reperfusion. Exp Physiol 98:1028–1037CrossRefPubMed
31.
go back to reference Hofmann U, Hu K, Walter F, Burkard N, Ertl G, Bauersachs J, Ritter O, Frantz S, Bonz A (2010) Pharmacological pre- and post-conditioning with the sphingosine-1-phosphate receptor modulator FTY720 after myocardial ischaemia–reperfusion. Br J Pharmacol 160:1243–1251CrossRefPubMedPubMedCentral Hofmann U, Hu K, Walter F, Burkard N, Ertl G, Bauersachs J, Ritter O, Frantz S, Bonz A (2010) Pharmacological pre- and post-conditioning with the sphingosine-1-phosphate receptor modulator FTY720 after myocardial ischaemia–reperfusion. Br J Pharmacol 160:1243–1251CrossRefPubMedPubMedCentral
32.
go back to reference Garcia-Dorado D, Inserte J, Ruiz-Meana M, Gonzalez MA, Solares J, Julia M, Barrabes JA, Soler-Soler J (1997) Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation 96:3579–3586CrossRefPubMed Garcia-Dorado D, Inserte J, Ruiz-Meana M, Gonzalez MA, Solares J, Julia M, Barrabes JA, Soler-Soler J (1997) Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation 96:3579–3586CrossRefPubMed
33.
go back to reference Johansen D, Sanden E, Hagve M, Chu X, Sundset R, Ytrehus K (2011) Heptanol triggers cardioprotection via mitochondrial mechanisms and mitochondrial potassium channel opening in rat hearts. Acta Physiol (Oxf) 201:435–444CrossRef Johansen D, Sanden E, Hagve M, Chu X, Sundset R, Ytrehus K (2011) Heptanol triggers cardioprotection via mitochondrial mechanisms and mitochondrial potassium channel opening in rat hearts. Acta Physiol (Oxf) 201:435–444CrossRef
34.
go back to reference Chen BP, Mao HJ, Fan FY, Bruce IC, Xia Q (2005) Delayed uncoupling contributes to the protective effect of heptanol against ischaemia in the rat isolated heart. Clin Exp Pharmacol Physiol 32:655–662CrossRefPubMed Chen BP, Mao HJ, Fan FY, Bruce IC, Xia Q (2005) Delayed uncoupling contributes to the protective effect of heptanol against ischaemia in the rat isolated heart. Clin Exp Pharmacol Physiol 32:655–662CrossRefPubMed
35.
go back to reference Hawat G, Benderdour M, Rousseau G, Baroudi G (2010) Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflug Arch 460:583–592CrossRef Hawat G, Benderdour M, Rousseau G, Baroudi G (2010) Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflug Arch 460:583–592CrossRef
36.
go back to reference Hawat G, Helie P, Baroudi G (2012) Single intravenous low-dose injections of connexin 43 mimetic peptides protect ischemic heart in vivo against myocardial infarction. J Mol Cell Cardiol 53:559–566CrossRefPubMed Hawat G, Helie P, Baroudi G (2012) Single intravenous low-dose injections of connexin 43 mimetic peptides protect ischemic heart in vivo against myocardial infarction. J Mol Cell Cardiol 53:559–566CrossRefPubMed
37.
go back to reference Lubkemeier I, Bosen F, Kim JS, Sasse P, Malan D, Fleischmann BK, Willecke K (2015) Human connexin43e42k mutation from a sudden infant death victim leads to impaired ventricular activation and neonatal death in mice. Circ Cardiovasc Genet 8:21–29CrossRefPubMed Lubkemeier I, Bosen F, Kim JS, Sasse P, Malan D, Fleischmann BK, Willecke K (2015) Human connexin43e42k mutation from a sudden infant death victim leads to impaired ventricular activation and neonatal death in mice. Circ Cardiovasc Genet 8:21–29CrossRefPubMed
38.
go back to reference Elmas E, Popp T, Lang S, Dempfle CE, Kalsch T, Borggrefe M (2010) Sudden death: do cytokines and prothrombotic peptides contribute to the occurrence of ventricular fibrillation during acute myocardial infarction? Int J Cardiol 145:118–119CrossRefPubMed Elmas E, Popp T, Lang S, Dempfle CE, Kalsch T, Borggrefe M (2010) Sudden death: do cytokines and prothrombotic peptides contribute to the occurrence of ventricular fibrillation during acute myocardial infarction? Int J Cardiol 145:118–119CrossRefPubMed
39.
go back to reference Neubauer J, Lecca MR, Russo G, Bartsch C, Medeiros-Domingo A, Berger W, Haas C (2018) Exome analysis in 34 sudden unexplained death (SUD) victims mainly identified variants in channelopathy-associated genes. Int J Legal Med 132:1057–1065CrossRefPubMed Neubauer J, Lecca MR, Russo G, Bartsch C, Medeiros-Domingo A, Berger W, Haas C (2018) Exome analysis in 34 sudden unexplained death (SUD) victims mainly identified variants in channelopathy-associated genes. Int J Legal Med 132:1057–1065CrossRefPubMed
40.
go back to reference Wellens HJ, Schwartz PJ, Lindemans FW, Buxton AE, Goldberger JJ, Hohnloser SH, Huikuri HV, Kaab S, La Rovere MT, Malik M, Myerburg RJ, Simoons ML, Swedberg K, Tijssen J, Voors AA, Wilde AA (2014) Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J 35:1642–1651CrossRefPubMedPubMedCentral Wellens HJ, Schwartz PJ, Lindemans FW, Buxton AE, Goldberger JJ, Hohnloser SH, Huikuri HV, Kaab S, La Rovere MT, Malik M, Myerburg RJ, Simoons ML, Swedberg K, Tijssen J, Voors AA, Wilde AA (2014) Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J 35:1642–1651CrossRefPubMedPubMedCentral
41.
go back to reference Morel S, Christoffersen C, Axelsen LN, Montecucco F, Rochemont V, Frias MA, Mach F, James RW, Naus CC, Chanson M, Lampe PD, Nielsen MS, Nielsen LB, Kwak BR (2016) Sphingosine-1-phosphate reduces ischaemia–reperfusion injury by phosphorylating the gap junction protein connexin43. Cardiovasc Res 109:385–396CrossRefPubMedPubMedCentral Morel S, Christoffersen C, Axelsen LN, Montecucco F, Rochemont V, Frias MA, Mach F, James RW, Naus CC, Chanson M, Lampe PD, Nielsen MS, Nielsen LB, Kwak BR (2016) Sphingosine-1-phosphate reduces ischaemia–reperfusion injury by phosphorylating the gap junction protein connexin43. Cardiovasc Res 109:385–396CrossRefPubMedPubMedCentral
42.
go back to reference Egom EE, Ke Y, Musa H, Mohamed TM, Wang T, Cartwright E, Solaro RJ, Lei M (2010) FTY720 prevents ischemia/reperfusion injury-associated arrhythmias in an ex vivo rat heart model via activation of Pak1/Akt signaling. J Mol Cell Cardiol 48:406–414CrossRefPubMed Egom EE, Ke Y, Musa H, Mohamed TM, Wang T, Cartwright E, Solaro RJ, Lei M (2010) FTY720 prevents ischemia/reperfusion injury-associated arrhythmias in an ex vivo rat heart model via activation of Pak1/Akt signaling. J Mol Cell Cardiol 48:406–414CrossRefPubMed
43.
go back to reference Egom EE, Kruzliak P, Rotrekl V, Lei M (2015) The effect of the sphingosine-1-phosphate analogue FTY720 on atrioventricular nodal tissue. J Cell Mol Med 19:1729–1734CrossRefPubMedPubMedCentral Egom EE, Kruzliak P, Rotrekl V, Lei M (2015) The effect of the sphingosine-1-phosphate analogue FTY720 on atrioventricular nodal tissue. J Cell Mol Med 19:1729–1734CrossRefPubMedPubMedCentral
44.
go back to reference Burstein B, Jayaraman D, Husa R (2016) Early left ventricular ejection fraction as a predictor of survival after cardiac arrest. Acute Card Care 18:35–39CrossRefPubMed Burstein B, Jayaraman D, Husa R (2016) Early left ventricular ejection fraction as a predictor of survival after cardiac arrest. Acute Card Care 18:35–39CrossRefPubMed
46.
go back to reference Miura T, Ohnuma Y, Kuno A, Tanno M, Ichikawa Y, Nakamura Y, Yano T, Miki T, Sakamoto J, Shimamoto K (2004) Protective role of gap junctions in preconditioning against myocardial infarction. Am J Physiol Heart Circ Physiol 286:H214–221CrossRefPubMed Miura T, Ohnuma Y, Kuno A, Tanno M, Ichikawa Y, Nakamura Y, Yano T, Miki T, Sakamoto J, Shimamoto K (2004) Protective role of gap junctions in preconditioning against myocardial infarction. Am J Physiol Heart Circ Physiol 286:H214–221CrossRefPubMed
47.
go back to reference Fontes MS, van Veen TA, de Bakker JM, van Rijen HV (2012) Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta 1818:2020–2029CrossRefPubMed Fontes MS, van Veen TA, de Bakker JM, van Rijen HV (2012) Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta 1818:2020–2029CrossRefPubMed
48.
go back to reference Michela P, Velia V, Aldo P, Ada P (2015) Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 768:71–76CrossRefPubMed Michela P, Velia V, Aldo P, Ada P (2015) Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 768:71–76CrossRefPubMed
49.
go back to reference Dhein S, Rothe S, Busch A, Rojas Gomez DM, Boldt A, Reutemann A, Seidel T, Salameh A, Pfannmuller B, Rastan A, Kostelka M, Mohr FW (2011) Effects of metoprolol therapy on cardiac gap junction remodelling and conduction in human chronic atrial fibrillation. Br J Pharmacol 164:607–616CrossRefPubMedPubMedCentral Dhein S, Rothe S, Busch A, Rojas Gomez DM, Boldt A, Reutemann A, Seidel T, Salameh A, Pfannmuller B, Rastan A, Kostelka M, Mohr FW (2011) Effects of metoprolol therapy on cardiac gap junction remodelling and conduction in human chronic atrial fibrillation. Br J Pharmacol 164:607–616CrossRefPubMedPubMedCentral
50.
go back to reference Mayama T, Matsumura K, Lin H, Ogawa K, Imanaga I (2007) Remodelling of cardiac gap junction connexin 43 and arrhythmogenesis. Exp Clin Cardiol 12:67–76PubMedPubMedCentral Mayama T, Matsumura K, Lin H, Ogawa K, Imanaga I (2007) Remodelling of cardiac gap junction connexin 43 and arrhythmogenesis. Exp Clin Cardiol 12:67–76PubMedPubMedCentral
51.
go back to reference Lo CW (2000) Role of gap junctions in cardiac conduction and development: insights from the connexin knockout mice. Circ Res 87:346–348CrossRefPubMed Lo CW (2000) Role of gap junctions in cardiac conduction and development: insights from the connexin knockout mice. Circ Res 87:346–348CrossRefPubMed
52.
go back to reference Murakami A, Takasugi H, Ohnuma S, Koide Y, Sakurai A, Takeda S, Hasegawa T, Sasamori J, Konno T, Hayashi K, Watanabe Y, Mori K, Sato Y, Takahashi A, Mochizuki N, Takakura N (2010) Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. Mol Pharmacol 77:704–713CrossRefPubMed Murakami A, Takasugi H, Ohnuma S, Koide Y, Sakurai A, Takeda S, Hasegawa T, Sasamori J, Konno T, Hayashi K, Watanabe Y, Mori K, Sato Y, Takahashi A, Mochizuki N, Takakura N (2010) Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. Mol Pharmacol 77:704–713CrossRefPubMed
53.
go back to reference Thimm J, Mechler A, Lin H, Rhee S, Lal R (2005) Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem 280:10646–10654CrossRefPubMed Thimm J, Mechler A, Lin H, Rhee S, Lal R (2005) Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem 280:10646–10654CrossRefPubMed
54.
go back to reference Keul P, van Borren MM, Ghanem A, Muller FU, Baartscheer A, Verkerk AO, Stumpel F, Schulte JS, Hamdani N, Linke WA, van Loenen P, Matus M, Schmitz W, Stypmann J, Tiemann K, Ravesloot JH, Alewijnse AE, Hermann S, Spijkers LJ, Hiller KH, Herr D, Heusch G, Schafers M, Peters SL, Chun J, Levkau B (2016) Sphingosine-1-phosphate receptor 1 regulates cardiac function by modulating Ca2+ sensitivity and Na+/H+ exchange and mediates protection by ischemic preconditioning. J Am Heart Assoc 5:e003393CrossRefPubMedPubMedCentral Keul P, van Borren MM, Ghanem A, Muller FU, Baartscheer A, Verkerk AO, Stumpel F, Schulte JS, Hamdani N, Linke WA, van Loenen P, Matus M, Schmitz W, Stypmann J, Tiemann K, Ravesloot JH, Alewijnse AE, Hermann S, Spijkers LJ, Hiller KH, Herr D, Heusch G, Schafers M, Peters SL, Chun J, Levkau B (2016) Sphingosine-1-phosphate receptor 1 regulates cardiac function by modulating Ca2+ sensitivity and Na+/H+ exchange and mediates protection by ischemic preconditioning. J Am Heart Assoc 5:e003393CrossRefPubMedPubMedCentral
Metadata
Title
Involvement of sphingosine-1-phosphate receptors 2/3 in IR-induced sudden cardiac death
Authors
Xiaojia Zhang
Deqing Chen
Jiaqi Wang
Jinding Liu
Hualin Guo
Gengqian Zhang
Publication date
01-06-2019
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 6/2019
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-018-01323-8

Other articles of this Issue 6/2019

Heart and Vessels 6/2019 Go to the issue