Skip to main content
Top
Published in: Neurocritical Care 1/2022

24-03-2022 | Subarachnoid Hemorrhage | Original work

Waveform Morphology as a Surrogate for ICP Monitoring: A Comparison Between an Invasive and a Noninvasive Method

Authors: Fabiano Moulin de Moraes, Eva Rocha, Felipe Chaves Duarte Barros, Flávio Geraldo Rezende Freitas, Maramelia Miranda, Raul Alberto Valiente, João Brainer Clares de Andrade, Feres Eduardo Aparecido Chaddad Neto, Gisele Sampaio Silva

Published in: Neurocritical Care | Issue 1/2022

Login to get access

Abstract

Background

Although the placement of an intraventricular catheter remains the gold standard technique for measuring intracranial pressure (ICP), the method has several limitations. Therefore, noninvasive alternatives to ICP (ICPni) measurement are of great interest. The main objective of this study was to compare the correlation and agreement of wave morphology between ICP (standard intraventricular ICP monitoring) and a new ICPni monitor in patients admitted with stroke. The second objective was to estimate the discrimination of the noninvasive method to detect intracranial hypertension.

Methods

We prospectively collected data of adults admitted to an intensive care unit with subarachnoid hemorrhage, intracerebral hemorrhage, or ischemic stroke in whom an invasive ICP monitor was placed. Measurements were simultaneously collected from two parameters [time-to-peak (TTP) and the ratio regarding the second and first peak of the ICP wave (P2/P1 ratio)] of ICP and ICPni wave morphology monitors (Brain4care). Intracranial hypertension was defined as an invasively measured sustained ICP > 20 mm Hg for at least 5 min.

Results

We studied 18 patients (subarachnoid hemorrhage = 14; intracerebral hemorrhage = 3; ischemic stroke = 1) on 60 occasions with a median age of 52 ± 14.3 years. A total of 197,400 waves (2495 min) from both ICP (standard ICP monitoring) and the ICPni monitor were sliced into 1-min-long segments, and we determined TTP and the P2/P1 ratio from the mean pulse. The median invasively measured ICP was 13 (9.8–16.2) mm Hg, and intracranial hypertension was present on 18 occasions (30%). The correlation and agreement between invasive and noninvasive methods for wave morphology were strong for the P2/P1 ratio and moderate for TTP using categoric (κ agreement 88.1% and 71.3%, respectively) and continuous (intraclass correlation coefficient 0.831 and 0.584, respectively) measures. There was a moderate but significant correlation with the mean ICP value (P2/P1 ratio r = 0.427; TTP r = 0.353; p < 0.001 for all) between noninvasive and invasive techniques. The areas under the curve to estimate intracranial hypertension were 0.786 [95% confidence interval (CI) 0.72–0.93] for the P2/P1 ratio and 0.694 (95% CI 0.60–0.74) for TTP.

Conclusions

The new ICPni wave morphology monitor showed a good agreement with the standard invasive method and an acceptable discriminatory power to detect intracranial hypertension.
Clinical trial registration Trial registration: NCT05121155.
Literature
1.
go back to reference Fried HI, Nathan BR, Rowe AS, Zabramski JM, Andaluz N, Bhimraj A, et al. The insertion and management of external ventricular drains: an evidence-based consensus statement: a statement for healthcare professionals from the neurocritical care society. Neurocrit Care. 2016;24(1):61–81.CrossRefPubMed Fried HI, Nathan BR, Rowe AS, Zabramski JM, Andaluz N, Bhimraj A, et al. The insertion and management of external ventricular drains: an evidence-based consensus statement: a statement for healthcare professionals from the neurocritical care society. Neurocrit Care. 2016;24(1):61–81.CrossRefPubMed
2.
go back to reference Srinivasan VM, O’Neill BR, Jho D, Whiting DM, Oh MY. The history of external ventricular drainage: historical vignette. J Neurosurg. 2014;120(1):228–36.CrossRefPubMed Srinivasan VM, O’Neill BR, Jho D, Whiting DM, Oh MY. The history of external ventricular drainage: historical vignette. J Neurosurg. 2014;120(1):228–36.CrossRefPubMed
3.
go back to reference Helbok R, Olson DW, Le Roux P, Vespa P, Menon DK, Vespa P, et al. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations. Neurocrit Care. 2014;21(2):85–94.CrossRef Helbok R, Olson DW, Le Roux P, Vespa P, Menon DK, Vespa P, et al. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations. Neurocrit Care. 2014;21(2):85–94.CrossRef
4.
go back to reference Cardim D, Robba C, Bohdanowicz M, Donnelly J, Cabella B, Liu X, et al. Non-invasive monitoring of intracranial pressure using transcranial Doppler ultrasonography: Is it possible? Neurocrit Care. 2016;25(3):473–91.CrossRefPubMedPubMedCentral Cardim D, Robba C, Bohdanowicz M, Donnelly J, Cabella B, Liu X, et al. Non-invasive monitoring of intracranial pressure using transcranial Doppler ultrasonography: Is it possible? Neurocrit Care. 2016;25(3):473–91.CrossRefPubMedPubMedCentral
6.
go back to reference de Moraes FM, Silva GS. Noninvasive intracranial pressure monitoring methods: a critical review. Arq Neuropsiquiatr. 2021;79(5):437–46.CrossRefPubMed de Moraes FM, Silva GS. Noninvasive intracranial pressure monitoring methods: a critical review. Arq Neuropsiquiatr. 2021;79(5):437–46.CrossRefPubMed
7.
go back to reference Vinciguerra L, Bösel J. Noninvasive neuromonitoring: current utility in subarachnoid hemorrhage, traumatic brain injury, and stroke. Neurocrit Care. 2017;27(1):122–40.CrossRefPubMed Vinciguerra L, Bösel J. Noninvasive neuromonitoring: current utility in subarachnoid hemorrhage, traumatic brain injury, and stroke. Neurocrit Care. 2017;27(1):122–40.CrossRefPubMed
8.
go back to reference Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring—review and avenues for development. Sensors (Switzerland). 2018;18(2):3–7.CrossRef Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring—review and avenues for development. Sensors (Switzerland). 2018;18(2):3–7.CrossRef
9.
go back to reference Sonig A, Jumah F, Raju B, Patel NV, Gupta G, Nanda A. The historical evolution of intracranial pressure monitoring. World Neurosurg. 2020;138:491–7.CrossRefPubMed Sonig A, Jumah F, Raju B, Patel NV, Gupta G, Nanda A. The historical evolution of intracranial pressure monitoring. World Neurosurg. 2020;138:491–7.CrossRefPubMed
10.
go back to reference Pitlyk PJ, Piantanida TPPD. Noninvasive intracranial pressure monitoring. Neurosurgery. 1985;17:581–4.CrossRefPubMed Pitlyk PJ, Piantanida TPPD. Noninvasive intracranial pressure monitoring. Neurosurgery. 1985;17:581–4.CrossRefPubMed
11.
go back to reference Xy LW. Deformation of skull bone as intracranial pressure changing. Afr J Biotechnol. 2009;8:745–50. Xy LW. Deformation of skull bone as intracranial pressure changing. Afr J Biotechnol. 2009;8:745–50.
12.
go back to reference Mascarenhas S, Vilela GHF, Carlotti C, Damiano LEG, Seluque W, Colli B, et al. The new ICP minimally invasive method shows that the monro-kellie doctrine is not valid. Acta Neurochir Suppl. 2012;114:117–20.CrossRefPubMed Mascarenhas S, Vilela GHF, Carlotti C, Damiano LEG, Seluque W, Colli B, et al. The new ICP minimally invasive method shows that the monro-kellie doctrine is not valid. Acta Neurochir Suppl. 2012;114:117–20.CrossRefPubMed
13.
go back to reference Mascarenhas SVG. Noninvasive intracranian pressure system. United States; Patent No. WO/2013/041973., 2013. Mascarenhas SVG. Noninvasive intracranian pressure system. United States; Patent No. WO/2013/041973., 2013.
14.
go back to reference Fan JY, Kirkness C, Vicini P, Burr RMP. Intracranial pressure waveform morphology and intracranial adaptive capacity. Am J Crit Care. 2008;6:545–56.CrossRef Fan JY, Kirkness C, Vicini P, Burr RMP. Intracranial pressure waveform morphology and intracranial adaptive capacity. Am J Crit Care. 2008;6:545–56.CrossRef
15.
go back to reference Cabella B, Vilela GHF, Mascarenhas S, Czosnyka M, Smielewski P, Dias C, et al. Validation of a new noninvasive intracranial pressure monitoring method by direct comparison with an invasive technique. Acta Neurochir Suppl. 2016;122:93–6.CrossRefPubMed Cabella B, Vilela GHF, Mascarenhas S, Czosnyka M, Smielewski P, Dias C, et al. Validation of a new noninvasive intracranial pressure monitoring method by direct comparison with an invasive technique. Acta Neurochir Suppl. 2016;122:93–6.CrossRefPubMed
16.
go back to reference Kasprowicz M, Lalou DA, Czosnyka M, Garnett M, Czosnyka Z. Intracranial pressure, its components and cerebrospinal fluid pressure–volume compensation. Acta Neurol Scand. 2016;134(3):168–80.CrossRefPubMed Kasprowicz M, Lalou DA, Czosnyka M, Garnett M, Czosnyka Z. Intracranial pressure, its components and cerebrospinal fluid pressure–volume compensation. Acta Neurol Scand. 2016;134(3):168–80.CrossRefPubMed
18.
go back to reference Brasil S, Taccone FS, Wayhs Y, Tomazini BM, Annoni F, Fonseca S, et al. Cerebral Hemodynamics and intracranial compliance impairment in critically Ill COVID-19 patients: a pilot study. Brain Sci. 2021;11:874.CrossRefPubMedPubMedCentral Brasil S, Taccone FS, Wayhs Y, Tomazini BM, Annoni F, Fonseca S, et al. Cerebral Hemodynamics and intracranial compliance impairment in critically Ill COVID-19 patients: a pilot study. Brain Sci. 2021;11:874.CrossRefPubMedPubMedCentral
19.
go back to reference Frigieri G, Andrade RAP, Wang CC, Spavieri D, Lopes L, Brunelli R, et al. Analysis of a minimally invasive intracranial pressure signals during infusion at the subarachnoid spinal space of pigs. Acta Neurochir Suppl. 2018;126:75–7.CrossRefPubMed Frigieri G, Andrade RAP, Wang CC, Spavieri D, Lopes L, Brunelli R, et al. Analysis of a minimally invasive intracranial pressure signals during infusion at the subarachnoid spinal space of pigs. Acta Neurochir Suppl. 2018;126:75–7.CrossRefPubMed
20.
go back to reference Eide PK. Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within the brain parenchyma and the epidural space. Med Eng Phys. 2008;30(1):34–40.CrossRefPubMed Eide PK. Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within the brain parenchyma and the epidural space. Med Eng Phys. 2008;30(1):34–40.CrossRefPubMed
21.
go back to reference Nucci CG, De Bonis P, Mangiola A, Santini P, Sciandrone M, Risi A, et al. Intracranial pressure wave morphological classification: automated analysis and clinical validation. Acta Neurochir (Wien). 2016;158(3):581–8.CrossRef Nucci CG, De Bonis P, Mangiola A, Santini P, Sciandrone M, Risi A, et al. Intracranial pressure wave morphological classification: automated analysis and clinical validation. Acta Neurochir (Wien). 2016;158(3):581–8.CrossRef
22.
go back to reference Teichmann D, Lynch JC, Heldt T. Distortion of the intracranial pressure waveform by extraventricular drainage system. IEEE Trans Biomed Eng. 2021;68(5):1646–57.CrossRefPubMed Teichmann D, Lynch JC, Heldt T. Distortion of the intracranial pressure waveform by extraventricular drainage system. IEEE Trans Biomed Eng. 2021;68(5):1646–57.CrossRefPubMed
23.
go back to reference Portella G, Cormio M, Citerio G, Contant C, Kiening K, Enblad P, et al. Continuous cerebral compliance monitoring in severe head injury: Its relationship with intracranial pressure and cerebral perfusion pressure. Acta Neurochir (Wien). 2005;147(7):707–13.CrossRef Portella G, Cormio M, Citerio G, Contant C, Kiening K, Enblad P, et al. Continuous cerebral compliance monitoring in severe head injury: Its relationship with intracranial pressure and cerebral perfusion pressure. Acta Neurochir (Wien). 2005;147(7):707–13.CrossRef
24.
go back to reference Carrera E, Kim DJ, Castellani G, Zweifel C, Czosnyka Z, Kasparowicz M, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27(2):317–24.CrossRefPubMed Carrera E, Kim DJ, Castellani G, Zweifel C, Czosnyka Z, Kasparowicz M, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27(2):317–24.CrossRefPubMed
25.
go back to reference Eide PK. The correlation between pulsatile intracranial pressure and indices of intracranial pressure–volume reserve capacity: results from ventricular infusion testing. J Neurosurg. 2016;125(6):1493–503.CrossRefPubMed Eide PK. The correlation between pulsatile intracranial pressure and indices of intracranial pressure–volume reserve capacity: results from ventricular infusion testing. J Neurosurg. 2016;125(6):1493–503.CrossRefPubMed
26.
go back to reference Avezaat CJJ, Van Eijndhoven JHM, Wyper DJ. Cerebrospinal fluid pulse pressure and intracranial volume–pressure relationships. J Neurol Neurosurg Psychiatry. 1979;42(8):687–700.CrossRefPubMedPubMedCentral Avezaat CJJ, Van Eijndhoven JHM, Wyper DJ. Cerebrospinal fluid pulse pressure and intracranial volume–pressure relationships. J Neurol Neurosurg Psychiatry. 1979;42(8):687–700.CrossRefPubMedPubMedCentral
27.
go back to reference Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg. 1983;59(5):817–21.CrossRefPubMed Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg. 1983;59(5):817–21.CrossRefPubMed
28.
go back to reference Kazimierska A, Kasprowicz M, Czosnyka M, Placek MM, Baledent O, Smielewski P, et al. Compliance of the cerebrospinal space: comparison of three methods. Acta Neurochir (Wien). 2021;163:1979–89.CrossRef Kazimierska A, Kasprowicz M, Czosnyka M, Placek MM, Baledent O, Smielewski P, et al. Compliance of the cerebrospinal space: comparison of three methods. Acta Neurochir (Wien). 2021;163:1979–89.CrossRef
29.
go back to reference Eide PK, Bentsen G, Sorteberg AG, Marthinsen PB, Stubhaug A, Sorteberg W. A randomized and blinded single-center trial comparing the effect of intracranial pressure and intracranial pressure wave amplitude-guided intensive care management on early clinical state and 12-month outcome in patients with aneurysmal subarachnoid hemo. Neurosurgery. 2011;69(5):1105–15.CrossRefPubMed Eide PK, Bentsen G, Sorteberg AG, Marthinsen PB, Stubhaug A, Sorteberg W. A randomized and blinded single-center trial comparing the effect of intracranial pressure and intracranial pressure wave amplitude-guided intensive care management on early clinical state and 12-month outcome in patients with aneurysmal subarachnoid hemo. Neurosurgery. 2011;69(5):1105–15.CrossRefPubMed
30.
go back to reference Bellner J, Romner B, Reinstrup P, Kristiansson K-A, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62:45–51.CrossRefPubMed Bellner J, Romner B, Reinstrup P, Kristiansson K-A, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62:45–51.CrossRefPubMed
31.
go back to reference De Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, et al. Transcranial Doppler pulsatility index: What it is and what it isn’t. Neurocrit Care. 2012;17(1):58–66.CrossRefPubMed De Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, et al. Transcranial Doppler pulsatility index: What it is and what it isn’t. Neurocrit Care. 2012;17(1):58–66.CrossRefPubMed
32.
go back to reference Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen LO. Transcranial Doppler pulsatility index: Not an accurate method to assess intracranial pressure. Neurosurgery. 2010;66(6):1050–7.CrossRefPubMed Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen LO. Transcranial Doppler pulsatility index: Not an accurate method to assess intracranial pressure. Neurosurgery. 2010;66(6):1050–7.CrossRefPubMed
33.
go back to reference Zweifel C, Czosnyka M, Carrera E, Deriva N, Pickard JD, Smielewski P. Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients. Neurosurgery. 2012;71(4):853–61.CrossRefPubMed Zweifel C, Czosnyka M, Carrera E, Deriva N, Pickard JD, Smielewski P. Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients. Neurosurgery. 2012;71(4):853–61.CrossRefPubMed
34.
go back to reference Robba C, Robba C, Pozzebon S, Moro B, Vincent JL, Creteur J, et al. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care. 2020;24(1):1–10.CrossRef Robba C, Robba C, Pozzebon S, Moro B, Vincent JL, Creteur J, et al. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care. 2020;24(1):1–10.CrossRef
35.
go back to reference Kim DJ, Czosnyka Z, Kasprowicz M, Smieleweski P, Baledent O, Guerguerian AM, et al. Continuous monitoring of the Monro–Kellie doctrine: Is it possible? J Neurotrauma. 2012;29(7):1354–63.CrossRefPubMedPubMedCentral Kim DJ, Czosnyka Z, Kasprowicz M, Smieleweski P, Baledent O, Guerguerian AM, et al. Continuous monitoring of the Monro–Kellie doctrine: Is it possible? J Neurotrauma. 2012;29(7):1354–63.CrossRefPubMedPubMedCentral
Metadata
Title
Waveform Morphology as a Surrogate for ICP Monitoring: A Comparison Between an Invasive and a Noninvasive Method
Authors
Fabiano Moulin de Moraes
Eva Rocha
Felipe Chaves Duarte Barros
Flávio Geraldo Rezende Freitas
Maramelia Miranda
Raul Alberto Valiente
João Brainer Clares de Andrade
Feres Eduardo Aparecido Chaddad Neto
Gisele Sampaio Silva
Publication date
24-03-2022
Publisher
Springer US
Published in
Neurocritical Care / Issue 1/2022
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-022-01477-4

Other articles of this Issue 1/2022

Neurocritical Care 1/2022 Go to the issue