Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2015

Open Access 01-12-2015 | Commentary

Study of phosphorylation events for cancer diagnoses and treatment

Authors: Elena López Villar, Luis Madero, Juan A López-Pascual, William C Cho

Published in: Clinical and Translational Medicine | Issue 1/2015

Login to get access

Abstract

The activation of signaling cascades in response to extracellular and intracellular stimuli to control cell growth, proliferation and survival, is orchestrated by protein kinases via phosphorylation. A critical issue is the study of the mechanisms of cancer cells for the development of more effective drugs. With the application of the new proteomic technologies, together with the advancement in the sequencing of the human proteome, patients will therefore be benefited by the discovery of novel therapeutic and/or diagnostic protein targets. Furthermore, the advances in proteomic approaches and the Human Proteome Organization (HUPO) have opened a new door which is helpful in the identification of patients at risk and towards improving current therapies. Modification of the signaling-networks via mutations or abnormal protein expression underlies the cause or consequence of many diseases including cancer. Resulting data is used to reveal connections between genes proteins and compounds and the related molecular pathways for underlining disease states. As a delegate of HUPO, for human proteome on children assays and studies, we, at Hospital Universitario Niño Jesús, are seeking to support the human proteome in this context. Clinical goals have to be clearly established and proteomics experts have to set up the appropriate proteomic strategy, which coupled to bioinformatics will make it possible to achieve new therapies for patients with poor prognosis. We envision to combine our up-coming data to the HUPO organization in order to support international efforts to advance the cure of cancer disease.
Literature
1.
go back to reference López E, Madero L, López-Pascual J, Latterich M. Clinical proteomics and Omics clues useful in translational medicine research. Proteome Sci. 2012;9:27.CrossRef López E, Madero L, López-Pascual J, Latterich M. Clinical proteomics and Omics clues useful in translational medicine research. Proteome Sci. 2012;9:27.CrossRef
2.
go back to reference James P. The International Proteomics Tutorial Programme (IPTP): a teaching tool box for the proteomics community. Proteomics. 2011;11(18):3596–7.PubMedCrossRef James P. The International Proteomics Tutorial Programme (IPTP): a teaching tool box for the proteomics community. Proteomics. 2011;11(18):3596–7.PubMedCrossRef
3.
go back to reference James P, Marko-Varga GA. The International Proteomics Tutorial Programme–reaching out to the next generation proteome scientists. J Proteome Res. 2011;10(8):3311–2.PubMedCrossRef James P, Marko-Varga GA. The International Proteomics Tutorial Programme–reaching out to the next generation proteome scientists. J Proteome Res. 2011;10(8):3311–2.PubMedCrossRef
4.
go back to reference Dunn MJ, Gil C, Kleinhammer C, Lottspeich F, Pennington S, Sanchez JC, et al. EuPA achieves visibility - an activity report on the first three years. J Proteomics. 2008;71(1):11–8.PubMedCrossRef Dunn MJ, Gil C, Kleinhammer C, Lottspeich F, Pennington S, Sanchez JC, et al. EuPA achieves visibility - an activity report on the first three years. J Proteomics. 2008;71(1):11–8.PubMedCrossRef
5.
go back to reference Orchard S, Albar JP, Binz PA, Kettner C, Jones AR, Salek RM, et al. Meeting new challenges: the 2014 HUPO- PSI/COSMOS workshop: 13–15 April 2014, Frankfurt. Germany Proteomics. 2014;14(21–22):2363–8.CrossRef Orchard S, Albar JP, Binz PA, Kettner C, Jones AR, Salek RM, et al. Meeting new challenges: the 2014 HUPO- PSI/COSMOS workshop: 13–15 April 2014, Frankfurt. Germany Proteomics. 2014;14(21–22):2363–8.CrossRef
6.
go back to reference Virshup DM, Shenolikar S. From promiscuity to precision: protein phosphatases get a makeover. Mol Cell. 2009;33(5):537–45.PubMedCrossRef Virshup DM, Shenolikar S. From promiscuity to precision: protein phosphatases get a makeover. Mol Cell. 2009;33(5):537–45.PubMedCrossRef
7.
go back to reference Grønborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics. 2002;1(7):517–27.PubMedCrossRef Grønborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics. 2002;1(7):517–27.PubMedCrossRef
8.
go back to reference Zhang ZY. Functional studies of protein tyrosine phosphatases with chemical on different phosphopeptide enrichment techniques. Biochim Biophys Acta. 2005;1754(1–2):100–7.PubMedCrossRef Zhang ZY. Functional studies of protein tyrosine phosphatases with chemical on different phosphopeptide enrichment techniques. Biochim Biophys Acta. 2005;1754(1–2):100–7.PubMedCrossRef
9.
go back to reference Jensen SS, Larsen MR. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom. 2007;21(22):3635–45.PubMedCrossRef Jensen SS, Larsen MR. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom. 2007;21(22):3635–45.PubMedCrossRef
10.
go back to reference Neville DC, Rozanas CR, Price EM, Gruis DB, Verkman AS, Townsend RR. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci. 1997;6(11):2436–45.PubMedCentralPubMedCrossRef Neville DC, Rozanas CR, Price EM, Gruis DB, Verkman AS, Townsend RR. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci. 1997;6(11):2436–45.PubMedCentralPubMedCrossRef
11.
go back to reference Figeys D, Gygi SP, McKinnon G, Aebersold R. An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal Chem. 1998;70(18):3728–34.PubMedCrossRef Figeys D, Gygi SP, McKinnon G, Aebersold R. An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal Chem. 1998;70(18):3728–34.PubMedCrossRef
12.
go back to reference Li S, Dass C. Iron (III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem. 1999;270(1):9–14.PubMedCrossRef Li S, Dass C. Iron (III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem. 1999;270(1):9–14.PubMedCrossRef
13.
go back to reference Posewitz MC, Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem. 1999;71(14):2883–92.PubMedCrossRef Posewitz MC, Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem. 1999;71(14):2883–92.PubMedCrossRef
14.
go back to reference Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem. 2004;76(14):3935–43.PubMedCrossRef Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem. 2004;76(14):3935–43.PubMedCrossRef
15.
go back to reference Nuhse TS, Stensballe A, Jensen ON, Peck SC. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics. 2003;2(11):1234–43.PubMedCrossRef Nuhse TS, Stensballe A, Jensen ON, Peck SC. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics. 2003;2(11):1234–43.PubMedCrossRef
16.
go back to reference Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol. 2002;20(3):301–5.PubMedCrossRef Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol. 2002;20(3):301–5.PubMedCrossRef
17.
go back to reference Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJ. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005;4(7):873–86.PubMedCrossRef Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJ. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005;4(7):873–86.PubMedCrossRef
18.
go back to reference Ashman K, Villar EL. Phosphoproteomics and cancer research. Clin Transl Oncol. 2009;11(6):356–62.PubMedCrossRef Ashman K, Villar EL. Phosphoproteomics and cancer research. Clin Transl Oncol. 2009;11(6):356–62.PubMedCrossRef
20.
go back to reference Connor PA, Dobson KD, McQuillan J. Infrared Spectroscopy of the TiO2/Aqueous Solution Interface. Langmuir. 1999;15:2402.CrossRef Connor PA, Dobson KD, McQuillan J. Infrared Spectroscopy of the TiO2/Aqueous Solution Interface. Langmuir. 1999;15:2402.CrossRef
21.
go back to reference Connor PA, McQuillan A. Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir. 1999;15:2916.CrossRef Connor PA, McQuillan A. Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir. 1999;15:2916.CrossRef
22.
go back to reference Thingholm TE, Jensen ON, Larsen MR. Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Methods Mol Biol. 2009;527:67–78.PubMedCrossRef Thingholm TE, Jensen ON, Larsen MR. Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Methods Mol Biol. 2009;527:67–78.PubMedCrossRef
23.
go back to reference Thingholm TE, Jensen ON, Robinson PJ, Larsen MR. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics. 2008;7(4):661–71.PubMedCrossRef Thingholm TE, Jensen ON, Robinson PJ, Larsen MR. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics. 2008;7(4):661–71.PubMedCrossRef
24.
go back to reference Kweon HK, Hakansson K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem. 2006;78(6):1743–9.PubMedCrossRef Kweon HK, Hakansson K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem. 2006;78(6):1743–9.PubMedCrossRef
25.
go back to reference Zoumaro-Djayoon AD, Heck AJ, Muñoz J. Targeted analysis of tyrosine phosphorylation by immuno-affinity enrichment of tyrosine phosphorylated peptides prior to mass spectrometric analysis. Methods. 2012;56(2):268–74.PubMedCrossRef Zoumaro-Djayoon AD, Heck AJ, Muñoz J. Targeted analysis of tyrosine phosphorylation by immuno-affinity enrichment of tyrosine phosphorylated peptides prior to mass spectrometric analysis. Methods. 2012;56(2):268–74.PubMedCrossRef
26.
go back to reference Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, et al. Quantitative phosphoproteomics applied to the yeast pheromone signalling pathway. Mol Cell Proteomics. 2005;4(3):310–27.PubMedCrossRef Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, et al. Quantitative phosphoproteomics applied to the yeast pheromone signalling pathway. Mol Cell Proteomics. 2005;4(3):310–27.PubMedCrossRef
27.
go back to reference McNulty DE, Annan RS. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics. 2008;7(5):971–80.PubMedCrossRef McNulty DE, Annan RS. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics. 2008;7(5):971–80.PubMedCrossRef
28.
go back to reference Elias JE, Haas W, Faherty BK, Gygi SP. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods. 2005;2:667–75.PubMedCrossRef Elias JE, Haas W, Faherty BK, Gygi SP. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods. 2005;2:667–75.PubMedCrossRef
29.
go back to reference Pinkse MW, Mohammed S, Gouw JW, van Breukelen B, Vos HR, Heck AJ. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in drosophila melanogaster. J Proteome Res. 2008;7(2):687–97.PubMedCrossRef Pinkse MW, Mohammed S, Gouw JW, van Breukelen B, Vos HR, Heck AJ. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in drosophila melanogaster. J Proteome Res. 2008;7(2):687–97.PubMedCrossRef
32.
go back to reference D’Souza RC, Knittle AM, Nagaraj N, van Dinther M, Choudhary C, ten Dijke P, et al. Time-resolved dissection of early phosphoproteome and ensuing proteome changes in response to TGF-β. Sci Signal. 2014;7(335):rs5. doi:10.1126/scisignal.2004856.PubMedCrossRef D’Souza RC, Knittle AM, Nagaraj N, van Dinther M, Choudhary C, ten Dijke P, et al. Time-resolved dissection of early phosphoproteome and ensuing proteome changes in response to TGF-β. Sci Signal. 2014;7(335):rs5. doi:10.​1126/​scisignal.​2004856.PubMedCrossRef
35.
go back to reference Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, et al. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011;4(164):rs3. doi:10.1126/scisignal.2001570.PubMedCrossRef Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, et al. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011;4(164):rs3. doi:10.​1126/​scisignal.​2001570.PubMedCrossRef
36.
go back to reference Biemann K. Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom. 1988;16(1–12):99–111.PubMedCrossRef Biemann K. Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom. 1988;16(1–12):99–111.PubMedCrossRef
37.
go back to reference Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984;11(11):601.PubMedCrossRef Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984;11(11):601.PubMedCrossRef
38.
go back to reference Steen H, Küster B, Mann M. Quadrupole time-of-flight versus triplequadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J Mass Spectrom. 2001;36(7):782–90.PubMedCrossRef Steen H, Küster B, Mann M. Quadrupole time-of-flight versus triplequadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J Mass Spectrom. 2001;36(7):782–90.PubMedCrossRef
39.
go back to reference Steen H, Mann M. A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. J Am Soc Mass Spectrom. 2002;13(8):996–1003.PubMedCrossRef Steen H, Mann M. A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. J Am Soc Mass Spectrom. 2002;13(8):996–1003.PubMedCrossRef
40.
go back to reference Wiśniewski JR, Mann M. Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal Chem. 2012;84(6):2631–7.PubMedCrossRef Wiśniewski JR, Mann M. Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal Chem. 2012;84(6):2631–7.PubMedCrossRef
41.
42.
go back to reference López E, Wang X, Madero L, López-Pascual J, Latterich M. Functional phosphoproteomic mass spectrometry-based approaches. Clin Transl Med. 2012;1(1):20.PubMedCentralPubMedCrossRef López E, Wang X, Madero L, López-Pascual J, Latterich M. Functional phosphoproteomic mass spectrometry-based approaches. Clin Transl Med. 2012;1(1):20.PubMedCentralPubMedCrossRef
43.
go back to reference López E, Muñoz SR, Pascual JL, Madero L. Relevant phosphoproteomic and mass spectrometry: approaches useful in clinical research. Clin Transl Med. 2012;1(1):2.PubMedCentralPubMedCrossRef López E, Muñoz SR, Pascual JL, Madero L. Relevant phosphoproteomic and mass spectrometry: approaches useful in clinical research. Clin Transl Med. 2012;1(1):2.PubMedCentralPubMedCrossRef
45.
go back to reference López E, Wesselink JJ, López I, Mendieta J, Gómez-Puertas P, Muñoz SR. Technical phosphoproteomic and bioinformatic tools useful in cancer research. J Clin Bioinforma. 2011;1:26.PubMedCentralPubMedCrossRef López E, Wesselink JJ, López I, Mendieta J, Gómez-Puertas P, Muñoz SR. Technical phosphoproteomic and bioinformatic tools useful in cancer research. J Clin Bioinforma. 2011;1:26.PubMedCentralPubMedCrossRef
48.
49.
go back to reference Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5(11):976–89.PubMedCrossRef Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5(11):976–89.PubMedCrossRef
50.
go back to reference Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551–67.PubMedCrossRef Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551–67.PubMedCrossRef
51.
go back to reference Koenig T, Menze BH, Kirchner M, Monigatti F, Parker KC, Patterson T, et al. Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res. 2008;7(9):3708–17. 46.PubMedCrossRef Koenig T, Menze BH, Kirchner M, Monigatti F, Parker KC, Patterson T, et al. Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res. 2008;7(9):3708–17. 46.PubMedCrossRef
52.
go back to reference Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol. 1993;3(6):327–32.PubMedCrossRef Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol. 1993;3(6):327–32.PubMedCrossRef
53.
go back to reference Bradshaw RA, Burlingame AL, Carr S, Aebersold R. Reporting protein identification data: the next generation of guidelines. Mol Cell Proteomics. 2006;5(5):787–8.PubMedCrossRef Bradshaw RA, Burlingame AL, Carr S, Aebersold R. Reporting protein identification data: the next generation of guidelines. Mol Cell Proteomics. 2006;5(5):787–8.PubMedCrossRef
54.
go back to reference Chamrad D, Meyer HE. Valid data from large-scale proteomics studies. Nat Methods. 2005;2(9):647–8.PubMedCrossRef Chamrad D, Meyer HE. Valid data from large-scale proteomics studies. Nat Methods. 2005;2(9):647–8.PubMedCrossRef
55.
go back to reference Wang G, Wu WW, Zhang Z, Masilamani S, Shen RF. Decoy methods for assessing false positives and false discovery rates in shotgun proteomics. Anal Chem. 2009;81(1):146–59.PubMedCentralPubMedCrossRef Wang G, Wu WW, Zhang Z, Masilamani S, Shen RF. Decoy methods for assessing false positives and false discovery rates in shotgun proteomics. Anal Chem. 2009;81(1):146–59.PubMedCentralPubMedCrossRef
56.
go back to reference Gibbons FD, Elias JE, Gygi SP, Roth FP. SILVER helps assign peptides to tandem mass spectra using intensity-based scoring. J Am Soc Mass Spectrom. 2004;15(6):910–2.PubMedCrossRef Gibbons FD, Elias JE, Gygi SP, Roth FP. SILVER helps assign peptides to tandem mass spectra using intensity-based scoring. J Am Soc Mass Spectrom. 2004;15(6):910–2.PubMedCrossRef
57.
go back to reference Bennetzen MV, Cox J, Mann M, Andersen JS. PhosphoSiteAnalyzer: a bioinformatic platform for deciphering phospho proteomes using kinase predictions retrieved from NetworKIN. J Proteome Res. 2012;11(6):3480–6. doi:10.1021/pr300016e. Epub 2012 May 23.PubMedCrossRef Bennetzen MV, Cox J, Mann M, Andersen JS. PhosphoSiteAnalyzer: a bioinformatic platform for deciphering phospho proteomes using kinase predictions retrieved from NetworKIN. J Proteome Res. 2012;11(6):3480–6. doi:10.​1021/​pr300016e. Epub 2012 May 23.PubMedCrossRef
58.
go back to reference Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations. PTMs and recalibrations Nucleic Acids Res. 2015;43(Database issue):D512–20. doi:10.1093/nar/gku1267.CrossRef Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations. PTMs and recalibrations Nucleic Acids Res. 2015;43(Database issue):D512–20. doi:10.​1093/​nar/​gku1267.CrossRef
62.
go back to reference Diella F, Gould CM, Chica C, Via A, Gibson TJ. Phospho. ELM: a database of phosphorylation sites–update 2008. Phospho. ELM: a database of phosphorylation sites–update 2008. Nucleic Acids Res. 2008;36(Database issue):D240–4.PubMedCentralPubMed Diella F, Gould CM, Chica C, Via A, Gibson TJ. Phospho. ELM: a database of phosphorylation sites–update 2008. Phospho. ELM: a database of phosphorylation sites–update 2008. Nucleic Acids Res. 2008;36(Database issue):D240–4.PubMedCentralPubMed
63.
go back to reference Diella F, Cameron S, Gemünd C, Linding R, Via A, Kuster B, et al. Phospho. ELM: a database of experimentally verified phosphorylation sites in eukaryoticproteins. BMC Bioinformatics. 2004;5:79.PubMedCentralPubMedCrossRef Diella F, Cameron S, Gemünd C, Linding R, Via A, Kuster B, et al. Phospho. ELM: a database of experimentally verified phosphorylation sites in eukaryoticproteins. BMC Bioinformatics. 2004;5:79.PubMedCentralPubMedCrossRef
64.
go back to reference Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.PubMedCentralPubMedCrossRef Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.PubMedCentralPubMedCrossRef
65.
go back to reference Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(Database issue):D808–15.PubMedCentralPubMedCrossRef Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(Database issue):D808–15.PubMedCentralPubMedCrossRef
66.
go back to reference Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011;39(Database issue):D561–8. doi:10.1093/nar/gkq973.PubMedCentralPubMedCrossRef Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011;39(Database issue):D561–8. doi:10.​1093/​nar/​gkq973.PubMedCentralPubMedCrossRef
67.
go back to reference Chen YA, Eschrich SA. Computational methods and opportunities for phosphorylation network medicine. Transl Cancer Res. 2014;3(3):266–78.PubMedCentralPubMed Chen YA, Eschrich SA. Computational methods and opportunities for phosphorylation network medicine. Transl Cancer Res. 2014;3(3):266–78.PubMedCentralPubMed
68.
go back to reference Linding R, Jensen LJ, Pasculescu A, Olhovsky M, Colwill K, Bork P, et al. NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res. 2008;36(Database issue):D695–9.PubMedCentralPubMed Linding R, Jensen LJ, Pasculescu A, Olhovsky M, Colwill K, Bork P, et al. NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res. 2008;36(Database issue):D695–9.PubMedCentralPubMed
75.
go back to reference Mao Y, Van Auken K, Li D, Arighi CN, McQuilton P, Hayman GT, et al. Overview of the gene ontology task at BioCreative IV. Database (Oxford). 2014;2014; Mao Y, Van Auken K, Li D, Arighi CN, McQuilton P, Hayman GT, et al. Overview of the gene ontology task at BioCreative IV. Database (Oxford). 2014;2014;
79.
go back to reference Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, et al. Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics. 2012;11(10):1070–83. Epub 2012 Jul 13.PubMedCentralPubMedCrossRef Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, et al. Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics. 2012;11(10):1070–83. Epub 2012 Jul 13.PubMedCentralPubMedCrossRef
80.
go back to reference Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jørgensen C, Miron IM, et al. Systematic discovery of in vivo phosphorylation networks. Cell. 2007;129(7):1415–26.PubMedCentralPubMedCrossRef Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jørgensen C, Miron IM, et al. Systematic discovery of in vivo phosphorylation networks. Cell. 2007;129(7):1415–26.PubMedCentralPubMedCrossRef
84.
go back to reference Lee TY, Bo-Kai Hsu J, Chang WC, Huang HD. RegPhos: a system to explore the protein kinase-substrate phosphorylation network inhumans. Nucleic Acids Res. 2011;39(Database issue):D777–87.PubMedCentralPubMedCrossRef Lee TY, Bo-Kai Hsu J, Chang WC, Huang HD. RegPhos: a system to explore the protein kinase-substrate phosphorylation network inhumans. Nucleic Acids Res. 2011;39(Database issue):D777–87.PubMedCentralPubMedCrossRef
85.
go back to reference Pei B, Shin DG. Reconstruction of biological networks by incorporating prior knowledge into Bayesiannetwork models. J Comput Biol. 2012;19(12):1324–34.PubMedCentralPubMedCrossRef Pei B, Shin DG. Reconstruction of biological networks by incorporating prior knowledge into Bayesiannetwork models. J Comput Biol. 2012;19(12):1324–34.PubMedCentralPubMedCrossRef
87.
go back to reference Colangelo CM, Shifman M, Cheung KH, Stone KL, Carriero NJ, Gulcicek EE, et al. YPED: an integrated bioinformatics suite and database for mass spectrometry-based proteomics research. Genomics Proteomics Bioinformatics. 2015;13(1):25–35.PubMedCentralPubMedCrossRef Colangelo CM, Shifman M, Cheung KH, Stone KL, Carriero NJ, Gulcicek EE, et al. YPED: an integrated bioinformatics suite and database for mass spectrometry-based proteomics research. Genomics Proteomics Bioinformatics. 2015;13(1):25–35.PubMedCentralPubMedCrossRef
89.
go back to reference López Villar E, Wu D, Cho WC, Madero L, Wang X. Proteomics-based discovery of biomarkers for paediatric acute lymphoblastic leukaemia: challenges and opportunities. J Cell Mol Med. 2014;18(7):1239–46.PubMedCentralPubMedCrossRef López Villar E, Wu D, Cho WC, Madero L, Wang X. Proteomics-based discovery of biomarkers for paediatric acute lymphoblastic leukaemia: challenges and opportunities. J Cell Mol Med. 2014;18(7):1239–46.PubMedCentralPubMedCrossRef
90.
go back to reference Lopez E, Lopez Pascual JA, Sequi J. Important clues of current phosphoproteomic approaches for clinical research. J Clin Immunol. 2012;02(S5):1–5. Lopez E, Lopez Pascual JA, Sequi J. Important clues of current phosphoproteomic approaches for clinical research. J Clin Immunol. 2012;02(S5):1–5.
Metadata
Title
Study of phosphorylation events for cancer diagnoses and treatment
Authors
Elena López Villar
Luis Madero
Juan A López-Pascual
William C Cho
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2015
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-015-0059-0

Other articles of this Issue 1/2015

Clinical and Translational Medicine 1/2015 Go to the issue