Skip to main content
Top
Published in: Virology Journal 1/2014

Open Access 01-12-2014 | Research

Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

Authors: Shaw-Wei D Tsen, David H Kingsley, Christian Poweleit, Samuel Achilefu, Douglas S Soroka, TC Wu, Kong-Thon Tsen

Published in: Virology Journal | Issue 1/2014

Login to get access

Abstract

Background

Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown.

Results and discussions

We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation.

Conclusion

We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tsen KT, et al: Inactivation of viruses by coherent excitations with a low power visible femtosecond laser. Virol J. 2007, 4 (50): 1-5. Tsen KT, et al: Inactivation of viruses by coherent excitations with a low power visible femtosecond laser. Virol J. 2007, 4 (50): 1-5.
2.
go back to reference Tsen KT, et al: Inactivation of viruses by laser-driven coherent excitations via impulsive stimulated Raman scattering process. J Biomed Opt. 2007, 12 (6): 064030-10.1117/1.2821713.PubMedCrossRef Tsen KT, et al: Inactivation of viruses by laser-driven coherent excitations via impulsive stimulated Raman scattering process. J Biomed Opt. 2007, 12 (6): 064030-10.1117/1.2821713.PubMedCrossRef
3.
go back to reference Tsen KT, et al: Inactivation of viruses with a very low power visible femtosecond laser. J Phys Condens Matter. 2007, 19 (32): 322102-10.1088/0953-8984/19/32/322102.CrossRef Tsen KT, et al: Inactivation of viruses with a very low power visible femtosecond laser. J Phys Condens Matter. 2007, 19 (32): 322102-10.1088/0953-8984/19/32/322102.CrossRef
4.
go back to reference Tsen KT, Tsen SD, Sankey OF, Kiang JG: Selective inactivation of microorganisms with near-infrared femtosecond laser pulses. J Phys Condens Matter. 2007, 19 (47): 472201-10.1088/0953-8984/19/47/472201.CrossRef Tsen KT, Tsen SD, Sankey OF, Kiang JG: Selective inactivation of microorganisms with near-infrared femtosecond laser pulses. J Phys Condens Matter. 2007, 19 (47): 472201-10.1088/0953-8984/19/47/472201.CrossRef
5.
go back to reference Tsen KT, Tsen SD, Hung CF, Wu TC, Kiang JG: Selective inactivation of human immunodeficiency virus with subpicosecond near-infrared laser pulses. J Phys Condens Matter. 2008, 20 (25): 252205-10.1088/0953-8984/20/25/252205.CrossRef Tsen KT, Tsen SD, Hung CF, Wu TC, Kiang JG: Selective inactivation of human immunodeficiency virus with subpicosecond near-infrared laser pulses. J Phys Condens Matter. 2008, 20 (25): 252205-10.1088/0953-8984/20/25/252205.CrossRef
6.
go back to reference Tsen KT, et al: Photonic approach to the selective inactivation of viruses with a near-infrared subpicosecond fiber laser. J Biomed Opt. 2009, 14 (6): 064042-10.1117/1.3275477.PubMedCrossRef Tsen KT, et al: Photonic approach to the selective inactivation of viruses with a near-infrared subpicosecond fiber laser. J Biomed Opt. 2009, 14 (6): 064042-10.1117/1.3275477.PubMedCrossRef
7.
go back to reference Tsen SD, Tsen YD, Tsen KT, Wu TC: Selective inactivation of viruses with femtosecond laser pulses and its potential use for in vitro therapy. J Healthc Eng. 2010, 1 (2): 185-196. 10.1260/2040-2295.1.2.185.CrossRef Tsen SD, Tsen YD, Tsen KT, Wu TC: Selective inactivation of viruses with femtosecond laser pulses and its potential use for in vitro therapy. J Healthc Eng. 2010, 1 (2): 185-196. 10.1260/2040-2295.1.2.185.CrossRef
8.
go back to reference Tsen KT, et al: Studies of inactivation of encephalomyocarditis virus, M13 bacteriophage, and Salmonella typhimurium by using a visible femtosecond laser: insight into the possible inactivation mechanisms. J Biomed Opt. 2011, 16 (7): 078003-10.1117/1.3600771.PubMedCrossRef Tsen KT, et al: Studies of inactivation of encephalomyocarditis virus, M13 bacteriophage, and Salmonella typhimurium by using a visible femtosecond laser: insight into the possible inactivation mechanisms. J Biomed Opt. 2011, 16 (7): 078003-10.1117/1.3600771.PubMedCrossRef
9.
go back to reference Tsen SD, Wu TC, Kiang JG, Tsen KT: Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation. J Biomed Sci. 2012, 19: 62-10.1186/1423-0127-19-62.PubMedPubMedCentralCrossRef Tsen SD, Wu TC, Kiang JG, Tsen KT: Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation. J Biomed Sci. 2012, 19: 62-10.1186/1423-0127-19-62.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Boustie M, Berthe L, de Resseguier T, Arrigoni M: Laser Shock Waves: Fundamentals and Applications, 1st Int. Symp. On Laser Ultrasonics: Science, Technology and Applications. 2008, Montreal: National Research Council of Canada, Paper #1 and reference therein Boustie M, Berthe L, de Resseguier T, Arrigoni M: Laser Shock Waves: Fundamentals and Applications, 1st Int. Symp. On Laser Ultrasonics: Science, Technology and Applications. 2008, Montreal: National Research Council of Canada, Paper #1 and reference therein
12.
go back to reference Wobus CE, et al: Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol. 2004, 2 (12): 2076-2084.CrossRef Wobus CE, et al: Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol. 2004, 2 (12): 2076-2084.CrossRef
13.
go back to reference Lou F, Neetoo H, Chen H, Li J: Inactivation of human norovirus surrogate by high pressure processing: effectiveness, mechanism and potential application in fresh produce industry. Appl Environ Microbiol. 2011, 77: 1862-1871. 10.1128/AEM.01918-10.PubMedPubMedCentralCrossRef Lou F, Neetoo H, Chen H, Li J: Inactivation of human norovirus surrogate by high pressure processing: effectiveness, mechanism and potential application in fresh produce industry. Appl Environ Microbiol. 2011, 77: 1862-1871. 10.1128/AEM.01918-10.PubMedPubMedCentralCrossRef
14.
go back to reference Kingsley DH: An RNA extraction protocol for shellfish-borne viruses. J Virol Methods. 2006, 141: 58-62.PubMedCrossRef Kingsley DH: An RNA extraction protocol for shellfish-borne viruses. J Virol Methods. 2006, 141: 58-62.PubMedCrossRef
15.
go back to reference Yan YX, Gamble EB, Nelson KA: Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J Chem Phys. 1985, 83 (11): 5391-5399. 10.1063/1.449708.CrossRef Yan YX, Gamble EB, Nelson KA: Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J Chem Phys. 1985, 83 (11): 5391-5399. 10.1063/1.449708.CrossRef
16.
go back to reference Maclean M, MacGregor SJ, Anderson JG, Woolsey G: Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol. 2009, 75 (7): 1932-1937. 10.1128/AEM.01892-08.PubMedPubMedCentralCrossRef Maclean M, MacGregor SJ, Anderson JG, Woolsey G: Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol. 2009, 75 (7): 1932-1937. 10.1128/AEM.01892-08.PubMedPubMedCentralCrossRef
17.
go back to reference Boyd RW: Nonlinear Optics. 1992, San Diego, CA: Academic Press Boyd RW: Nonlinear Optics. 1992, San Diego, CA: Academic Press
18.
go back to reference Cannon JL, et al: Surrogates for the study of norovirus stability and inactivation in the environment: a comparison of murine norovirus and feline calicivirus. J Food Prot. 2006, 69 (11): 2761-2765.PubMed Cannon JL, et al: Surrogates for the study of norovirus stability and inactivation in the environment: a comparison of murine norovirus and feline calicivirus. J Food Prot. 2006, 69 (11): 2761-2765.PubMed
19.
go back to reference Roden RB, Lowry DR, Schiller JT: Papillomavirus is resistant to dessication. J Infect Dis. 1997, 176 (4): 1076-1079. 10.1086/516515.PubMedCrossRef Roden RB, Lowry DR, Schiller JT: Papillomavirus is resistant to dessication. J Infect Dis. 1997, 176 (4): 1076-1079. 10.1086/516515.PubMedCrossRef
20.
go back to reference Nelson KA, Miller RJD, Lutz DR, Fayer MD: Optical generation of tunable ultrasonic waves. J Appl Phys. 1982, 53 (2): 1144-1149. 10.1063/1.329864.CrossRef Nelson KA, Miller RJD, Lutz DR, Fayer MD: Optical generation of tunable ultrasonic waves. J Appl Phys. 1982, 53 (2): 1144-1149. 10.1063/1.329864.CrossRef
21.
go back to reference De Silvestri S, et al: Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated raman scattering in α-perylene crystal from 20 to 300 K. Chem Phys Lett. 1985, 116 (2,3): 146-152.CrossRef De Silvestri S, et al: Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated raman scattering in α-perylene crystal from 20 to 300 K. Chem Phys Lett. 1985, 116 (2,3): 146-152.CrossRef
22.
go back to reference Nelson KA: Stimulated Brillouin scattering and optical excitation of coherent shear waves. J Appl Phys. 1982, 53 (9): 6060-6063. 10.1063/1.331556.CrossRef Nelson KA: Stimulated Brillouin scattering and optical excitation of coherent shear waves. J Appl Phys. 1982, 53 (9): 6060-6063. 10.1063/1.331556.CrossRef
23.
go back to reference Cho GC, Kutt W, Kurz H: Subpicosecond time-resolved coherent-phonon oscillations in GaAs. Phys Rev Lett. 1990, 65 (6): 764-766. 10.1103/PhysRevLett.65.764.PubMedCrossRef Cho GC, Kutt W, Kurz H: Subpicosecond time-resolved coherent-phonon oscillations in GaAs. Phys Rev Lett. 1990, 65 (6): 764-766. 10.1103/PhysRevLett.65.764.PubMedCrossRef
24.
go back to reference Cheng TK, et al: Mechanism for displacive excitation of coherent phonons in Sb, Bi, Te, and Ti2O3. Appl Phys Lett. 1991, 59 (16): 1923-1925. 10.1063/1.106187.CrossRef Cheng TK, et al: Mechanism for displacive excitation of coherent phonons in Sb, Bi, Te, and Ti2O3. Appl Phys Lett. 1991, 59 (16): 1923-1925. 10.1063/1.106187.CrossRef
25.
go back to reference Chwalek JM, Uher C, Whittaker JF, Mourou GA: Subpicosecond time resolved studies of coherent phonon oscillations in thin-film YBa2Cu3O6 + x(x < 0.4). Appl Phys Lett. 1991, 58 (9): 980-982. 10.1063/1.104462.CrossRef Chwalek JM, Uher C, Whittaker JF, Mourou GA: Subpicosecond time resolved studies of coherent phonon oscillations in thin-film YBa2Cu3O6 + x(x < 0.4). Appl Phys Lett. 1991, 58 (9): 980-982. 10.1063/1.104462.CrossRef
26.
go back to reference Merlin R: Generating coherent THz phonons with light pulses. Solid State Commun. 1997, 102 (2,3): 207-220.CrossRef Merlin R: Generating coherent THz phonons with light pulses. Solid State Commun. 1997, 102 (2,3): 207-220.CrossRef
27.
go back to reference Tsen KT, Tsen SWD, Dykeman EC, Sankey OF, Kiang JG: Contemporary Trends in Bacteriophage Research. Edited by: Adams HT. 2009, Hauppauge, NY: Nova Science publishers, 151-177. Tsen KT, Tsen SWD, Dykeman EC, Sankey OF, Kiang JG: Contemporary Trends in Bacteriophage Research. Edited by: Adams HT. 2009, Hauppauge, NY: Nova Science publishers, 151-177.
28.
go back to reference Dykeman EC, Sankey OF: Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids. Phys Rev E Stat Nonlin Soft Matter Phys. 2010, 81 (2): 021918-PubMedCrossRef Dykeman EC, Sankey OF: Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids. Phys Rev E Stat Nonlin Soft Matter Phys. 2010, 81 (2): 021918-PubMedCrossRef
29.
go back to reference Johns HE, Cunningham JR: The Physics of Radiology. 1983, Springfield, IL USA: C.C. Thomas Johns HE, Cunningham JR: The Physics of Radiology. 1983, Springfield, IL USA: C.C. Thomas
30.
go back to reference Gaffney KJ, et al: Hydrogen bond dissociation and reformation in methanol oligomers following hydroxyl stretch relaxation J. Phys Chem A. 2002, 106 (50): 12012-12023. 10.1021/jp021696g.CrossRef Gaffney KJ, et al: Hydrogen bond dissociation and reformation in methanol oligomers following hydroxyl stretch relaxation J. Phys Chem A. 2002, 106 (50): 12012-12023. 10.1021/jp021696g.CrossRef
31.
go back to reference O’Connell C, et al: Investigation of the hydrophobic recovery of various polymeric biomaterials after 172 nm UV treatment using contact angle, surface free energy and XPS measurements. Appl Surf Sci. 2009, 255 (8): 4405-4413. 10.1016/j.apsusc.2008.11.034.CrossRef O’Connell C, et al: Investigation of the hydrophobic recovery of various polymeric biomaterials after 172 nm UV treatment using contact angle, surface free energy and XPS measurements. Appl Surf Sci. 2009, 255 (8): 4405-4413. 10.1016/j.apsusc.2008.11.034.CrossRef
Metadata
Title
Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser
Authors
Shaw-Wei D Tsen
David H Kingsley
Christian Poweleit
Samuel Achilefu
Douglas S Soroka
TC Wu
Kong-Thon Tsen
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2014
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-11-20

Other articles of this Issue 1/2014

Virology Journal 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.