Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Research

Structural equation modelling exploration of the key pathophysiological processes involved in cardiac surgery-related acute kidney injury in infants

Authors: Mirela Bojan, Maria Constanza Basto Duarte, Natalia Ermak, Vanessa Lopez-Lopez, Agnès Mogenet, Marc Froissart

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Background

Uncertainties about the pathophysiological processes resulting in cardiac surgery-related acute kidney injury (AKI) in infants concern the relative impact of the most prominent risk factors, the clinical relevance of changes in glomerular filtration rate vs tubular injury, and the usefulness of available diagnostic tools. Structural equation modelling could allow for the assessment of these complex relationships.

Methods

A structural model was specified using data from a prospective observational cohort of 200 patients <1 year of age undergoing cardiopulmonary bypass surgery. It included four latent variables: AKI, modelled as a construct of perioperative creatinine variation, of oliguria and of urine neutrophil gelatinase-associated lipocalin (uNGAL) concentrations; the cardiopulmonary bypass characteristics; the occurrence of a post-operative low cardiac output syndrome and the post-operative outcome.

Results

The model showed a good fit, and all path coefficients were statistically significant. The bypass was the most prominent risk factor, with a path coefficient of 0.820 (95 % CI 0.527–0.979), translating to a 67.2 % explanation for the risk of AKI. A strong relationships was found between AKI and early uNGAL excretion, and between AKI and the post-operative outcome, with path coefficients of 0.611 (95 % CI 0.347–0.777) and 0.741 (95 % CI 0.610–0.988), respectively. The path coefficient between AKI and a >50 % increase in serum creatinine was smaller, with a path coefficient of 0.443 (95 % CI 0.273–0.596), and was intermediate for oliguria, defined as urine output <0.5 ml kg−1 h−1, with a path coefficient of 0.495 (95 % CI 0.250–0.864). A path coefficient of −0.229 (95 % CI −0.319 to 0.060) suggested that the risk of AKI during the first year of life did not increase with younger age at surgery.

Conclusions

These findings suggest that cardiac surgery-related AKI in infants is a translation of tubular injury, predominately driven by the cardiopulmonary bypass, and linked to early uNGAL excretion and to post-operative outcome.

Trial registration

ClinicalTrials.gov identifier NCT01219998. Registered 11 October 2010.
Appendix
Available only for authorised users
Literature
1.
go back to reference Blinder JJ, Goldstein SL, Lee VV, Baycroft A, Fraser CD, Nelson D, et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368–74.CrossRefPubMed Blinder JJ, Goldstein SL, Lee VV, Baycroft A, Fraser CD, Nelson D, et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368–74.CrossRefPubMed
2.
go back to reference Morgan CJ, Zappitelli M, Robertson CM, Alton GY, Sauve RS, Joffe AR, et al. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J Pediatr. 2013;162(1):120–7.e1.CrossRefPubMed Morgan CJ, Zappitelli M, Robertson CM, Alton GY, Sauve RS, Joffe AR, et al. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J Pediatr. 2013;162(1):120–7.e1.CrossRefPubMed
3.
go back to reference Stallwood MI, Grayson AD, Mills K, Scawn ND. Acute renal failure in coronary artery bypass surgery: independent effect of cardiopulmonary bypass. Ann Thorac Surg. 2004;77(3):968–72.CrossRefPubMed Stallwood MI, Grayson AD, Mills K, Scawn ND. Acute renal failure in coronary artery bypass surgery: independent effect of cardiopulmonary bypass. Ann Thorac Surg. 2004;77(3):968–72.CrossRefPubMed
4.
go back to reference Chan KL, Ip P, Chiu CS, Cheung YF. Peritoneal dialysis after surgery for congenital heart disease in infants and young children. Ann Thorac Surg. 2003;76(5):1443–9.CrossRefPubMed Chan KL, Ip P, Chiu CS, Cheung YF. Peritoneal dialysis after surgery for congenital heart disease in infants and young children. Ann Thorac Surg. 2003;76(5):1443–9.CrossRefPubMed
5.
go back to reference Guzzetta NA, Evans FM, Rosenberg ES, Fazlollah TM, Baker MJ, Wilson EC, et al. The impact of aprotinin on postoperative renal dysfunction in neonates undergoing cardiopulmonary bypass: a retrospective analysis. Anesth Analg. 2009;108(2):448–55.CrossRefPubMed Guzzetta NA, Evans FM, Rosenberg ES, Fazlollah TM, Baker MJ, Wilson EC, et al. The impact of aprotinin on postoperative renal dysfunction in neonates undergoing cardiopulmonary bypass: a retrospective analysis. Anesth Analg. 2009;108(2):448–55.CrossRefPubMed
6.
go back to reference Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–9.CrossRefPubMedPubMedCentral Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–9.CrossRefPubMedPubMedCentral
7.
go back to reference Pedersen KR, Povlsen JV, Christensen S, Pedersen J, Hjortholm K, Larsen SH, et al. Risk factors for acute renal failure requiring dialysis after surgery for congenital heart disease in children. Acta Anaesthesiol Scand. 2007;51(10):1344–9.CrossRefPubMed Pedersen KR, Povlsen JV, Christensen S, Pedersen J, Hjortholm K, Larsen SH, et al. Risk factors for acute renal failure requiring dialysis after surgery for congenital heart disease in children. Acta Anaesthesiol Scand. 2007;51(10):1344–9.CrossRefPubMed
8.
go back to reference Picca S, Principato F, Mazzera E, Corona R, Ferrigno L, Marcelletti C, et al. Risks of acute renal failure after cardiopulmonary bypass surgery in children: a retrospective 10-year case-control study. Nephrol Dial Transplant. 1995;10(5):630–6.PubMed Picca S, Principato F, Mazzera E, Corona R, Ferrigno L, Marcelletti C, et al. Risks of acute renal failure after cardiopulmonary bypass surgery in children: a retrospective 10-year case-control study. Nephrol Dial Transplant. 1995;10(5):630–6.PubMed
9.
go back to reference Alabbas A, Campbell A, Skippen P, Human D, Matsell D, Mammen C. Epidemiology of cardiac surgery-associated acute kidney injury in neonates: a retrospective study. Pediatr Nephrol. 2013;28(7):1127–34.CrossRefPubMed Alabbas A, Campbell A, Skippen P, Human D, Matsell D, Mammen C. Epidemiology of cardiac surgery-associated acute kidney injury in neonates: a retrospective study. Pediatr Nephrol. 2013;28(7):1127–34.CrossRefPubMed
10.
go back to reference Bojan M, Lopez-Lopez V, Pouard P, Falissard B, Journois D. Limitations of early serum creatinine variations for the assessment of kidney injury in neonates and infants with cardiac surgery. PLoS One. 2013;8(11), e79308.CrossRefPubMedPubMedCentral Bojan M, Lopez-Lopez V, Pouard P, Falissard B, Journois D. Limitations of early serum creatinine variations for the assessment of kidney injury in neonates and infants with cardiac surgery. PLoS One. 2013;8(11), e79308.CrossRefPubMedPubMedCentral
11.
go back to reference Bojan M, Vicca S, Lopez-Lopez V, Mogenet A, Pouard P, Falissard B, et al. Predictive performance of urine neutrophil gelatinase-associated lipocalin for dialysis requirement and death following cardiac surgery in neonates and infants. Clin J Am Soc Nephrol. 2014;9(2):285–94.CrossRefPubMed Bojan M, Vicca S, Lopez-Lopez V, Mogenet A, Pouard P, Falissard B, et al. Predictive performance of urine neutrophil gelatinase-associated lipocalin for dialysis requirement and death following cardiac surgery in neonates and infants. Clin J Am Soc Nephrol. 2014;9(2):285–94.CrossRefPubMed
12.
go back to reference Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301–9.CrossRefPubMedPubMedCentral Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301–9.CrossRefPubMedPubMedCentral
13.
go back to reference Parikh CR, Devarajan P, Zappitelli M, Sint K, Thiessen-Philbrook H, Li S, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol. 2011;22(9):1737–47.CrossRefPubMedPubMedCentral Parikh CR, Devarajan P, Zappitelli M, Sint K, Thiessen-Philbrook H, Li S, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol. 2011;22(9):1737–47.CrossRefPubMedPubMedCentral
14.
go back to reference Glasziou P, Irwig L, Deeks JJ. When should a new test become the current reference standard? Ann Intern Med. 2008;149(11):816–22.CrossRefPubMed Glasziou P, Irwig L, Deeks JJ. When should a new test become the current reference standard? Ann Intern Med. 2008;149(11):816–22.CrossRefPubMed
15.
go back to reference Hair Jr JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. Exploratoy Factor Analysis. Upper Saddle River, NJ: Prentice Hall; 2010. p. 89–149. Hair Jr JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. Exploratoy Factor Analysis. Upper Saddle River, NJ: Prentice Hall; 2010. p. 89–149.
16.
go back to reference Hair Jr JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. Structural Equations Modeling Overview. Upper Saddle River, NJ: Prentice Hall; 2010. p. 541–97. Hair Jr JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. Structural Equations Modeling Overview. Upper Saddle River, NJ: Prentice Hall; 2010. p. 541–97.
17.
go back to reference O’Brien SM, Clarke DR, Jacobs JP, Jacobs ML, Lacour-Gayet FG, Pizarro C, et al. An empirically based tool for analyzing mortality associated with congenital heart surgery. J Thorac Cardiovasc Surg. 2009;138(5):1139–53.CrossRefPubMed O’Brien SM, Clarke DR, Jacobs JP, Jacobs ML, Lacour-Gayet FG, Pizarro C, et al. An empirically based tool for analyzing mortality associated with congenital heart surgery. J Thorac Cardiovasc Surg. 2009;138(5):1139–53.CrossRefPubMed
19.
go back to reference Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.CrossRefPubMedPubMedCentral Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.CrossRefPubMedPubMedCentral
20.
go back to reference Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med. 2010;11(2):234–8.CrossRefPubMed Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med. 2010;11(2):234–8.CrossRefPubMed
21.
go back to reference Browne TR. Clinical trials performed for the new drug approval process in the United States: standard methods and alternative methods. Epilepsy Res Suppl. 1993;10:31–44.PubMed Browne TR. Clinical trials performed for the new drug approval process in the United States: standard methods and alternative methods. Epilepsy Res Suppl. 1993;10:31–44.PubMed
22.
go back to reference Rosner MH, Okusa MD. Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol. 2006;1(1):19–32.CrossRefPubMed Rosner MH, Okusa MD. Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol. 2006;1(1):19–32.CrossRefPubMed
23.
go back to reference Raimundo M, Crichton S, Syed Y, Martin JR, Beale R, Treacher D, et al. Low systemic oxygen delivery and BP and risk of progression of early AKI. Clin J Am Soc Nephrol. 2015;10(8):1340–9.CrossRefPubMed Raimundo M, Crichton S, Syed Y, Martin JR, Beale R, Treacher D, et al. Low systemic oxygen delivery and BP and risk of progression of early AKI. Clin J Am Soc Nephrol. 2015;10(8):1340–9.CrossRefPubMed
24.
go back to reference Fisher MA, Taylor GW, West BT, McCarthy ET. Bidirectional relationship between chronic kidney and periodontal disease: a study using structural equation modeling. Kidney Int. 2011;79(3):347–55.CrossRefPubMed Fisher MA, Taylor GW, West BT, McCarthy ET. Bidirectional relationship between chronic kidney and periodontal disease: a study using structural equation modeling. Kidney Int. 2011;79(3):347–55.CrossRefPubMed
25.
go back to reference Gardiner L, Akintola A, Chen G, Catania JM, Vaidya V, Burghardt RC, et al. Structural equation modeling highlights the potential of Kim-1 as a biomarker for chronic kidney disease. Am J Nephrol. 2012;35(2):152–63.CrossRefPubMedPubMedCentral Gardiner L, Akintola A, Chen G, Catania JM, Vaidya V, Burghardt RC, et al. Structural equation modeling highlights the potential of Kim-1 as a biomarker for chronic kidney disease. Am J Nephrol. 2012;35(2):152–63.CrossRefPubMedPubMedCentral
26.
go back to reference Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Am J Kidney Dis. 1997;29(3):465–77.CrossRefPubMed Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Am J Kidney Dis. 1997;29(3):465–77.CrossRefPubMed
27.
go back to reference Taylor KM. SIRS—the systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg. 1996;61(6):1607–8.CrossRefPubMed Taylor KM. SIRS—the systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg. 1996;61(6):1607–8.CrossRefPubMed
28.
go back to reference Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.CrossRefPubMed Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.CrossRefPubMed
29.
go back to reference Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57(17):1752–61.CrossRefPubMedPubMedCentral Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57(17):1752–61.CrossRefPubMedPubMedCentral
30.
go back to reference Heyman SN, Rosenberger C, Rosen S. Acute kidney injury: lessons from experimental models. Contrib Nephrol. 2011;169:286–96.CrossRefPubMed Heyman SN, Rosenberger C, Rosen S. Acute kidney injury: lessons from experimental models. Contrib Nephrol. 2011;169:286–96.CrossRefPubMed
31.
go back to reference Basu RK, Kaddourah A, Terrell T, Mottes T, Arnold P, Jacobs J, et al. Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology in critically ill children (AWARE): study protocol for a prospective observational study. BMC Nephrol. 2015;16:24.CrossRefPubMedPubMedCentral Basu RK, Kaddourah A, Terrell T, Mottes T, Arnold P, Jacobs J, et al. Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology in critically ill children (AWARE): study protocol for a prospective observational study. BMC Nephrol. 2015;16:24.CrossRefPubMedPubMedCentral
32.
go back to reference Drukker A, Guignard JP. Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr. 2002;14(2):175–82.CrossRefPubMed Drukker A, Guignard JP. Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr. 2002;14(2):175–82.CrossRefPubMed
33.
go back to reference Krishnamurthy G, Ratner V, Bacha E. Neonatal cardiac care, a perspective. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2013;16(1):21–31.CrossRefPubMed Krishnamurthy G, Ratner V, Bacha E. Neonatal cardiac care, a perspective. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2013;16(1):21–31.CrossRefPubMed
34.
go back to reference Jennings E, Cuadrado A, Maher KO, Kogon B, Kirshbom PM, Simsic JM. Short-term outcomes in premature neonates adhering to the philosophy of supportive care allowing for weight gain and organ maturation prior to cardiac surgery. J Intensive Care Med. 2012;27(1):32–6.CrossRefPubMed Jennings E, Cuadrado A, Maher KO, Kogon B, Kirshbom PM, Simsic JM. Short-term outcomes in premature neonates adhering to the philosophy of supportive care allowing for weight gain and organ maturation prior to cardiac surgery. J Intensive Care Med. 2012;27(1):32–6.CrossRefPubMed
35.
go back to reference Petit CJ, Rome JJ, Wernovsky G, Mason SE, Shera DM, Nicolson SC, et al. Preoperative brain injury in transposition of the great arteries is associated with oxygenation and time to surgery, not balloon atrial septostomy. Circulation. 2009;119(5):709–16.CrossRefPubMedPubMedCentral Petit CJ, Rome JJ, Wernovsky G, Mason SE, Shera DM, Nicolson SC, et al. Preoperative brain injury in transposition of the great arteries is associated with oxygenation and time to surgery, not balloon atrial septostomy. Circulation. 2009;119(5):709–16.CrossRefPubMedPubMedCentral
36.
37.
go back to reference Butts RJ, Scheurer MA, Atz AM, Zyblewski SC, Hulsey TC, Bradley SM, et al. Comparison of maximum vasoactive inotropic score and low cardiac output syndrome as markers of early postoperative outcomes after neonatal cardiac surgery. Pediatr Cardiol. 2012;33(4):633–8.CrossRefPubMedPubMedCentral Butts RJ, Scheurer MA, Atz AM, Zyblewski SC, Hulsey TC, Bradley SM, et al. Comparison of maximum vasoactive inotropic score and low cardiac output syndrome as markers of early postoperative outcomes after neonatal cardiac surgery. Pediatr Cardiol. 2012;33(4):633–8.CrossRefPubMedPubMedCentral
38.
go back to reference Hoffman TM, Wernovsky G, Atz AM, Bailey JM, Akbary A, Kocsis JF, et al. Prophylactic Intravenous Use of Milrinone after Cardiac Operation in Pediatrics (PRIMACORP) study. Am Heart J. 2002;143(1):15–21.CrossRefPubMed Hoffman TM, Wernovsky G, Atz AM, Bailey JM, Akbary A, Kocsis JF, et al. Prophylactic Intravenous Use of Milrinone after Cardiac Operation in Pediatrics (PRIMACORP) study. Am Heart J. 2002;143(1):15–21.CrossRefPubMed
Metadata
Title
Structural equation modelling exploration of the key pathophysiological processes involved in cardiac surgery-related acute kidney injury in infants
Authors
Mirela Bojan
Maria Constanza Basto Duarte
Natalia Ermak
Vanessa Lopez-Lopez
Agnès Mogenet
Marc Froissart
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1350-1

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue