Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2010

Open Access 01-12-2010 | Research

Structural and micro-anatomical changes in vertebrae associated with idiopathic-type spinal curvature in the curveback guppy model

Authors: Kristen F Gorman, Gregory R Handrigan, Ge Jin, Rob Wallis, Felix Breden

Published in: Scoliosis and Spinal Disorders | Issue 1/2010

Login to get access

Abstract

Background

The curveback lineage of guppy is characterized by heritable idiopathic-type spinal curvature that develops during growth. Prior work has revealed several important developmental similarities to the human idiopathic scoliosis (IS) syndrome. In this study we investigate structural and histological aspects of the vertebrae that are associated with spinal curvature in the curveback guppy and test for sexual dimorphism that might explain a female bias for severe curve magnitudes in the population.

Methods

Vertebrae were studied from whole-mount skeletal specimens of curved and non-curved adult males and females. A series of ratios were used to characterize structural aspects of each vertebra. A three-way analysis of variance tested for effects of sex, curvature, vertebral position along the spine, and all 2-way interactions (i.e., sex and curvature, sex and vertebra position, and vertebra position and curvature). Histological analyses were used to characterize micro-architectural changes in affected vertebrae and the intervertebral region.

Results

In curveback, vertebrae that are associated with curvature demonstrate asymmetric shape distortion, migration of the intervertebral ligament, and vertebral thickening on the concave side of curvature. There is sexual dimorphism among curved individuals such that for several vertebrae, females have more slender vertebrae than do males. Also, in the region of the spine where lordosis typically occurs, curved and non-curved females have a reduced width at the middle of their vertebrae, relative to males.

Conclusions

Based on similarities to human spinal curvatures and to animals with induced curves, the concave-convex biases described in the guppy suggest that there is a mechanical component to curve pathogenesis in curveback. Because idiopathic-type curvature in curveback is primarily a sagittal deformity, it is structurally more similar to Scheuermann kyphosis than IS. Anatomical differences between teleosts and humans make direct biomechanical comparisons difficult. However, study of basic biological systems involved in idiopathic-type spinal curvature in curveback may provide insight into the relationship between a predisposing aetiology, growth, and biomechanics. Further work is needed to clarify whether observed sex differences in vertebral characteristics are related to the female bias for severe curves that is observed in the population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gorman KF, Tredwell SJ, Breden F: The mutant guppy syndrome curveback as a model for human heritable spinal curvature. Spine. 2007, 32 (7): 735-741. 10.1097/01.brs.0000259081.40354.e2.CrossRefPubMed Gorman KF, Tredwell SJ, Breden F: The mutant guppy syndrome curveback as a model for human heritable spinal curvature. Spine. 2007, 32 (7): 735-741. 10.1097/01.brs.0000259081.40354.e2.CrossRefPubMed
2.
go back to reference Gorman KF, Breden F: Teleosts as models for human vertebral stability and deformity. Comparative Biochemistry and Physiology, Part C. 2007, 145: 28-38. Gorman KF, Breden F: Teleosts as models for human vertebral stability and deformity. Comparative Biochemistry and Physiology, Part C. 2007, 145: 28-38.
3.
go back to reference Handrigan GR, Wassersug RJ: The metamorphic fate of supernumerary caudal vertebrae in South Asian litter frogs (Anura: Megophryidae). J Anat. 2007, 211 (3): 271-9. 10.1111/j.1469-7580.2007.00757.x.CrossRefPubMedPubMedCentral Handrigan GR, Wassersug RJ: The metamorphic fate of supernumerary caudal vertebrae in South Asian litter frogs (Anura: Megophryidae). J Anat. 2007, 211 (3): 271-9. 10.1111/j.1469-7580.2007.00757.x.CrossRefPubMedPubMedCentral
4.
go back to reference Ashique AM, Fu K, Richman JM: Endogenous bone morphogenetic proteins regulate outgrowth and epithelial survival during avian lip fusion. Development. 2002, 129 (19): 4647-60.PubMed Ashique AM, Fu K, Richman JM: Endogenous bone morphogenetic proteins regulate outgrowth and epithelial survival during avian lip fusion. Development. 2002, 129 (19): 4647-60.PubMed
5.
go back to reference Brandner ME: : Normal values of the vertebral body and invertebral disk index during growth. AM. J. Roentgenol. 1970, 110: 618-627.CrossRef Brandner ME: : Normal values of the vertebral body and invertebral disk index during growth. AM. J. Roentgenol. 1970, 110: 618-627.CrossRef
6.
go back to reference Trontelj JV, Peak F, Dimitrijevi MR: Segmental neurophysiological mechanisms in scoliosis. J Bone Joint Surg. 1979, 61-B (3): 310-313. Trontelj JV, Peak F, Dimitrijevi MR: Segmental neurophysiological mechanisms in scoliosis. J Bone Joint Surg. 1979, 61-B (3): 310-313.
7.
go back to reference Skogland LB, Miller JAA: The length and proportions of the thoracolumbar spine in children with idiopathic scoliosis. Acta Orthop Scand. 1981, 52: 177-185. 10.3109/17453678108991778.CrossRefPubMed Skogland LB, Miller JAA: The length and proportions of the thoracolumbar spine in children with idiopathic scoliosis. Acta Orthop Scand. 1981, 52: 177-185. 10.3109/17453678108991778.CrossRefPubMed
9.
go back to reference Veldhuizen AG, Baas P, Webb PJ: Observations on the growth of the adolescent spine. J Bone Joint Surg. 1986, 68-B (5): 724-728. Veldhuizen AG, Baas P, Webb PJ: Observations on the growth of the adolescent spine. J Bone Joint Surg. 1986, 68-B (5): 724-728.
10.
go back to reference Rosen DE, Bailey RM: The poeciliid fishes (Cyprinodontiformes), their structure, zoogeography, and systematics. Bulletin of the American Museum of Natural History. 1963, 126 (1): pp 12-21. Rosen DE, Bailey RM: The poeciliid fishes (Cyprinodontiformes), their structure, zoogeography, and systematics. Bulletin of the American Museum of Natural History. 1963, 126 (1): pp 12-21.
11.
go back to reference Francois Y: Structure et développement de la vertèbre de Salmo et des téléostéens. Arch. Zool. Exp. Gen. 1966, 107: 283-328. Francois Y: Structure et développement de la vertèbre de Salmo et des téléostéens. Arch. Zool. Exp. Gen. 1966, 107: 283-328.
12.
go back to reference Laerm J: The development, function, and design of amphicoelous vertebrae in teleost fishes. Zool. J. Linn. Soc. 1976, 58: 237-254. 10.1111/j.1096-3642.1976.tb00830.x.CrossRef Laerm J: The development, function, and design of amphicoelous vertebrae in teleost fishes. Zool. J. Linn. Soc. 1976, 58: 237-254. 10.1111/j.1096-3642.1976.tb00830.x.CrossRef
13.
go back to reference Grotmol S, Kryvi H, Nordvik K, Totland GK: Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anat. Embryol. 2003, 207: 263-272. 10.1007/s00429-003-0349-y.CrossRefPubMed Grotmol S, Kryvi H, Nordvik K, Totland GK: Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anat. Embryol. 2003, 207: 263-272. 10.1007/s00429-003-0349-y.CrossRefPubMed
14.
go back to reference Kranenbarg S, van Cleynenbreugel T, Schipper H, van Leeuwen J: Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.). J Exp. Biol. 2005, 208: 3493-3502. 10.1242/jeb.01808.CrossRefPubMed Kranenbarg S, van Cleynenbreugel T, Schipper H, van Leeuwen J: Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.). J Exp. Biol. 2005, 208: 3493-3502. 10.1242/jeb.01808.CrossRefPubMed
15.
go back to reference Nordvik K, Kryvi H, Totland GK, Grotmol S: The salmon vertebral body develops through mineralization of two preformed tissues that are encompassed by two layers of bone. J. Anat. 2005, 206: 130-114. 10.1111/j.1469-7580.2005.00372.x.CrossRef Nordvik K, Kryvi H, Totland GK, Grotmol S: The salmon vertebral body develops through mineralization of two preformed tissues that are encompassed by two layers of bone. J. Anat. 2005, 206: 130-114. 10.1111/j.1469-7580.2005.00372.x.CrossRef
16.
go back to reference Inohaya K, Takano Y, Kudo A: The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev. Dyn. 2007, 236: 3031-3046. 10.1002/dvdy.21329.CrossRefPubMed Inohaya K, Takano Y, Kudo A: The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev. Dyn. 2007, 236: 3031-3046. 10.1002/dvdy.21329.CrossRefPubMed
17.
go back to reference Witten PE, Huysseune A: A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc. 2009, 84 (2): 315-46. 10.1111/j.1469-185X.2009.00077.x.CrossRefPubMed Witten PE, Huysseune A: A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc. 2009, 84 (2): 315-46. 10.1111/j.1469-185X.2009.00077.x.CrossRefPubMed
18.
go back to reference Schmitz RJ: Ultrastructure and function of cellular components of the intercentral joint in the percoid vertebral column. J. Morphol. 1995, 226: 1-24. 10.1002/jmor.1052260102.CrossRefPubMed Schmitz RJ: Ultrastructure and function of cellular components of the intercentral joint in the percoid vertebral column. J. Morphol. 1995, 226: 1-24. 10.1002/jmor.1052260102.CrossRefPubMed
19.
go back to reference Schmitz RJ: Immunohistochemical identification of the cytoskeletal elements in the notochord cells of bony fishes. J. Morphol. 1998, 236: 105-116. 10.1002/(SICI)1097-4687(199805)236:2<105::AID-JMOR2>3.0.CO;2-4.CrossRefPubMed Schmitz RJ: Immunohistochemical identification of the cytoskeletal elements in the notochord cells of bony fishes. J. Morphol. 1998, 236: 105-116. 10.1002/(SICI)1097-4687(199805)236:2<105::AID-JMOR2>3.0.CO;2-4.CrossRefPubMed
20.
go back to reference Skedros JG, Mason MW, Bloebaum RD: Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure. Anat Rec. 1994, 239: 405-413. 10.1002/ar.1092390407.CrossRefPubMed Skedros JG, Mason MW, Bloebaum RD: Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure. Anat Rec. 1994, 239: 405-413. 10.1002/ar.1092390407.CrossRefPubMed
21.
go back to reference Skedros JG, Mason MW, Nelson MC, Bloebaum RD: Evidence of structural and material adaptation to specific strain features in cortical bone. Anat Rec. 1996, 246: 47-63. 10.1002/(SICI)1097-0185(199609)246:1<47::AID-AR6>3.0.CO;2-C.CrossRefPubMed Skedros JG, Mason MW, Nelson MC, Bloebaum RD: Evidence of structural and material adaptation to specific strain features in cortical bone. Anat Rec. 1996, 246: 47-63. 10.1002/(SICI)1097-0185(199609)246:1<47::AID-AR6>3.0.CO;2-C.CrossRefPubMed
22.
go back to reference Su SC, Skedros JG, Bachus KN, Bloebaum RD: Loading conditions and cortical bone construction of an artiodactyl calcaneus. J Exp Biol. 1999, 202 (22): 3239-3254.PubMed Su SC, Skedros JG, Bachus KN, Bloebaum RD: Loading conditions and cortical bone construction of an artiodactyl calcaneus. J Exp Biol. 1999, 202 (22): 3239-3254.PubMed
23.
go back to reference Lanyon LE, Rubin CT: Static vs dynamic loads as an influence on bone remodelling. J Biomech. 1984, 17: 897-905. 10.1016/0021-9290(84)90003-4.CrossRefPubMed Lanyon LE, Rubin CT: Static vs dynamic loads as an influence on bone remodelling. J Biomech. 1984, 17: 897-905. 10.1016/0021-9290(84)90003-4.CrossRefPubMed
24.
go back to reference Shea KG, Ford T, Bloebaum RD, D'Astous J, King H: A comparison of the microarchitectural bone adaptations of the concave and convex thoracic spinal facets in idiopathic scoliosis. J Bone Joint Surg AM. 2004, 86: 1000-1006.PubMed Shea KG, Ford T, Bloebaum RD, D'Astous J, King H: A comparison of the microarchitectural bone adaptations of the concave and convex thoracic spinal facets in idiopathic scoliosis. J Bone Joint Surg AM. 2004, 86: 1000-1006.PubMed
25.
go back to reference Glowacki J, Cox KA, O'Sullivan J, Wilkie D, Deftos LJ: Osteoclasts can be induced in fish having an acellular bony skeleton. Proc Natl Acad Sci. 1986, 83: 4101-4107. 10.1073/pnas.83.11.4104.CrossRef Glowacki J, Cox KA, O'Sullivan J, Wilkie D, Deftos LJ: Osteoclasts can be induced in fish having an acellular bony skeleton. Proc Natl Acad Sci. 1986, 83: 4101-4107. 10.1073/pnas.83.11.4104.CrossRef
26.
go back to reference Witten PE, Villwock W: Growth requires bone resorption at particular skeletal elements in a teleost fish with acellular bone (Oreochromis niloticus, Teleostei: Cichlidae). J Appl Ichthyol. 1997, 13: 149-158. 10.1111/j.1439-0426.1997.tb00115.x.CrossRef Witten PE, Villwock W: Growth requires bone resorption at particular skeletal elements in a teleost fish with acellular bone (Oreochromis niloticus, Teleostei: Cichlidae). J Appl Ichthyol. 1997, 13: 149-158. 10.1111/j.1439-0426.1997.tb00115.x.CrossRef
27.
go back to reference Huysseune A: Skeletal system. The Laboratory Fish. Edited by: Ostrander G. 2000, London: Academic Press, 307-317. full_text.CrossRef Huysseune A: Skeletal system. The Laboratory Fish. Edited by: Ostrander G. 2000, London: Academic Press, 307-317. full_text.CrossRef
28.
go back to reference Kranenbarg S, Waarsing JH, Muller M, Weinans H, van Leeuwen JL: Lordotic vertebrae in sea bass (Dicentrarchus labrax L.) are adapted to increased loads. J. Biomech. 2005, 38: 1239-1246. 10.1016/j.jbiomech.2004.06.011.CrossRefPubMed Kranenbarg S, Waarsing JH, Muller M, Weinans H, van Leeuwen JL: Lordotic vertebrae in sea bass (Dicentrarchus labrax L.) are adapted to increased loads. J. Biomech. 2005, 38: 1239-1246. 10.1016/j.jbiomech.2004.06.011.CrossRefPubMed
29.
go back to reference Lowe TG, Line BG: Evidence Based Medicine, Analysis of Scheuermann Kyphosis. Spine. 2007, 32 (19S): S115-S119. 10.1097/BRS.0b013e3181354501.CrossRefPubMed Lowe TG, Line BG: Evidence Based Medicine, Analysis of Scheuermann Kyphosis. Spine. 2007, 32 (19S): S115-S119. 10.1097/BRS.0b013e3181354501.CrossRefPubMed
30.
go back to reference Stokes IA, Aronsson DD: Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord. 2001, 14 (4): 317-22. 10.1097/00002517-200108000-00006.CrossRefPubMed Stokes IA, Aronsson DD: Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord. 2001, 14 (4): 317-22. 10.1097/00002517-200108000-00006.CrossRefPubMed
31.
go back to reference Beuerlein MJ, Raso V, Hill DL, Moreau MJ, Mahood JK: Changes in alignment of the scoliotic spine in response to lateral bending. Spine. 2003, 28 (7): 693-698. 10.1097/00007632-200304010-00013.PubMed Beuerlein MJ, Raso V, Hill DL, Moreau MJ, Mahood JK: Changes in alignment of the scoliotic spine in response to lateral bending. Spine. 2003, 28 (7): 693-698. 10.1097/00007632-200304010-00013.PubMed
32.
go back to reference Majcher P, Fatyga M, Krupski W, Tatara M: The radiological imaging of the vertebral body and intervertebral discs wedging in idiopathic, right-side, thoracic scoliosis as a prognostic factor of the angular progression of spine curve. Ortopedia Traumatolgia Rehabilitacja. 2003, 5 (5): 659-665. Majcher P, Fatyga M, Krupski W, Tatara M: The radiological imaging of the vertebral body and intervertebral discs wedging in idiopathic, right-side, thoracic scoliosis as a prognostic factor of the angular progression of spine curve. Ortopedia Traumatolgia Rehabilitacja. 2003, 5 (5): 659-665.
33.
go back to reference Parent S, Labelle H, Skalli W, de Guise J: Vertebral wedging characteristic changes in scoliotic spines. Spine. 2004, 29 (20): E455-62. 10.1097/01.brs.0000142430.65463.3a.CrossRefPubMed Parent S, Labelle H, Skalli W, de Guise J: Vertebral wedging characteristic changes in scoliotic spines. Spine. 2004, 29 (20): E455-62. 10.1097/01.brs.0000142430.65463.3a.CrossRefPubMed
34.
go back to reference Parent S, Newton PO, Wenger DR: Adolescent idiopathic scoliosis: etiology, anatomy, natural history, and bracing. AAOS Instructional Course Lectures. 2005, 54: 529-536. Parent S, Newton PO, Wenger DR: Adolescent idiopathic scoliosis: etiology, anatomy, natural history, and bracing. AAOS Instructional Course Lectures. 2005, 54: 529-536.
35.
go back to reference Holder-Espinassa M: 3-M Syndrome. Edited by: Pagon RA, Bird TC, Dolan CR, Stephens K. 1993, GeneReviews [Internet] Seattle, WA: University of Washington, Seattle Holder-Espinassa M: 3-M Syndrome. Edited by: Pagon RA, Bird TC, Dolan CR, Stephens K. 1993, GeneReviews [Internet] Seattle, WA: University of Washington, Seattle
36.
go back to reference Borkhuu B, Nagaraju DK, Chan G, Holmes L, Mackenzie WG: Factors related to progression of thoracolumbar kyphosis in children with achondroplasia: a retrospective cohort study of forty-eight children treated in a comprehensive orthopeadic center. Spine. 2009, 34 (16): 1699-16705. 10.1097/BRS.0b013e3181ac8f9d.CrossRefPubMed Borkhuu B, Nagaraju DK, Chan G, Holmes L, Mackenzie WG: Factors related to progression of thoracolumbar kyphosis in children with achondroplasia: a retrospective cohort study of forty-eight children treated in a comprehensive orthopeadic center. Spine. 2009, 34 (16): 1699-16705. 10.1097/BRS.0b013e3181ac8f9d.CrossRefPubMed
37.
go back to reference Stokes IAF, Spence H, Aronsson DD, Kilmer N: Mechanical modulation of vertebral body growth: implications for scoliosis progression. Spine. 1996, 21 (10): 1162-1167. 10.1097/00007632-199605150-00007.CrossRefPubMed Stokes IAF, Spence H, Aronsson DD, Kilmer N: Mechanical modulation of vertebral body growth: implications for scoliosis progression. Spine. 1996, 21 (10): 1162-1167. 10.1097/00007632-199605150-00007.CrossRefPubMed
38.
go back to reference Stokes IAF, Burwell GR, Dangerfield PH: Biomechanical spinal growth modulation and progressive adolescent scoliosis- a test of the 'vicious cycle' pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE. Scoliosis. 2006, 1 (16): doi:10.1186/1748-7161-1-16 Stokes IAF, Burwell GR, Dangerfield PH: Biomechanical spinal growth modulation and progressive adolescent scoliosis- a test of the 'vicious cycle' pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE. Scoliosis. 2006, 1 (16): doi:10.1186/1748-7161-1-16
39.
go back to reference Nachlas IW, Borden JN: The cure of experimental scoliosis by directed growth control. J Bone and Joint Surg. 1951, 33-A: 24-34. Nachlas IW, Borden JN: The cure of experimental scoliosis by directed growth control. J Bone and Joint Surg. 1951, 33-A: 24-34.
40.
go back to reference Stilwell DL: Structural deformities of vertebrae. Bone adaptation and modelling in experimental scoliosis and kyphosis. Am J Orthop. 1962, 44: 611-634. Stilwell DL: Structural deformities of vertebrae. Bone adaptation and modelling in experimental scoliosis and kyphosis. Am J Orthop. 1962, 44: 611-634.
41.
go back to reference Aronsson DD, Stokes IA, Rosovsky J, Spence H: : Mechanical modulation of calf tail vertebral growth: implications for scoliosis progression. J Spinal Disord. 1999, 12 (2): 141-6. 10.1097/00002517-199904000-00011.CrossRefPubMed Aronsson DD, Stokes IA, Rosovsky J, Spence H: : Mechanical modulation of calf tail vertebral growth: implications for scoliosis progression. J Spinal Disord. 1999, 12 (2): 141-6. 10.1097/00002517-199904000-00011.CrossRefPubMed
42.
go back to reference Mente PL, Stokes IAF, Spence H, Aronsson DD: Progression of vertebral wedging in an asymmetrically loaded rat tail model. Spine. 1997, 22 (12): 1292-1296. 10.1097/00007632-199706150-00003.CrossRefPubMed Mente PL, Stokes IAF, Spence H, Aronsson DD: Progression of vertebral wedging in an asymmetrically loaded rat tail model. Spine. 1997, 22 (12): 1292-1296. 10.1097/00007632-199706150-00003.CrossRefPubMed
43.
go back to reference Mente PL, Aronsson DD, Stokes IA, Iatridis JC: Mechanical modulation of growth for the correction of vertebral wedge deformities. J Orthop Res. 1999, 17 (4): 518-524. 10.1002/jor.1100170409.CrossRefPubMed Mente PL, Aronsson DD, Stokes IA, Iatridis JC: Mechanical modulation of growth for the correction of vertebral wedge deformities. J Orthop Res. 1999, 17 (4): 518-524. 10.1002/jor.1100170409.CrossRefPubMed
44.
go back to reference Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN, Stefko RM: Experimental scoliosis in an immature goat model: a method that creates idiopathic-type deformity with minimal violation of the spinal elements along the curve. Spine. 2003, 28 (19): 2198-203. 10.1097/01.BRS.0000085095.37311.46.CrossRefPubMed Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN, Stefko RM: Experimental scoliosis in an immature goat model: a method that creates idiopathic-type deformity with minimal violation of the spinal elements along the curve. Spine. 2003, 28 (19): 2198-203. 10.1097/01.BRS.0000085095.37311.46.CrossRefPubMed
45.
go back to reference Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN: Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether. Spine. 2006, 31 (13): 1410-1414. 10.1097/01.brs.0000219869.01599.6b.CrossRefPubMed Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN: Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether. Spine. 2006, 31 (13): 1410-1414. 10.1097/01.brs.0000219869.01599.6b.CrossRefPubMed
46.
go back to reference Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN: Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine. 2006, 31 (12): 1314-1320. 10.1097/01.brs.0000218662.78165.b1.CrossRefPubMed Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN: Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine. 2006, 31 (12): 1314-1320. 10.1097/01.brs.0000218662.78165.b1.CrossRefPubMed
47.
go back to reference Kallemeier PM, Buttermann GR, Beaubien BP, Chen X, Polga DJ, Lew WD, Wood KB: Validation, reliability, and complications of a tethering scoliosis model in the rabbit. Eur Spine J. 2006, 15: 449-456. 10.1007/s00586-005-1032-1.CrossRefPubMed Kallemeier PM, Buttermann GR, Beaubien BP, Chen X, Polga DJ, Lew WD, Wood KB: Validation, reliability, and complications of a tethering scoliosis model in the rabbit. Eur Spine J. 2006, 15: 449-456. 10.1007/s00586-005-1032-1.CrossRefPubMed
48.
go back to reference Driscoll M, Aubin CE, Moreau A, Villemure I, Parent S: The role of spinal concave-convex biases in the progression of idiopathic scoliosis. Eur Spine J. 2009, 18 (2): 180-187. 10.1007/s00586-008-0862-z.CrossRefPubMedPubMedCentral Driscoll M, Aubin CE, Moreau A, Villemure I, Parent S: The role of spinal concave-convex biases in the progression of idiopathic scoliosis. Eur Spine J. 2009, 18 (2): 180-187. 10.1007/s00586-008-0862-z.CrossRefPubMedPubMedCentral
49.
go back to reference Gorman KF, Breden F: Idiopathic-type scoliosis is not exclusive to bipedalism. Med Hypotheses. 2009, 72 (3): 348-52. 10.1016/j.mehy.2008.09.052.CrossRefPubMed Gorman KF, Breden F: Idiopathic-type scoliosis is not exclusive to bipedalism. Med Hypotheses. 2009, 72 (3): 348-52. 10.1016/j.mehy.2008.09.052.CrossRefPubMed
50.
go back to reference Cheng JCY, Guo X, Chau WW, Chan YL: Lordoscoliosis in Adolescent Idiopathic Scoliosis: A MRI Study of the Thoracic Vertebrae vs. Normal Controls. Abstract from the SRS 2001 Annual Meeting. Spine. 2001, Group 3: paper #12 Cheng JCY, Guo X, Chau WW, Chan YL: Lordoscoliosis in Adolescent Idiopathic Scoliosis: A MRI Study of the Thoracic Vertebrae vs. Normal Controls. Abstract from the SRS 2001 Annual Meeting. Spine. 2001, Group 3: paper #12
51.
go back to reference Gorman KF, Breden F: Disproportionate body lengths correlate with idiopathic-type spinal curvature in the curveback guppy. Spine. 2010, 35 (5): 511-516. 10.1097/BRS.0b013e3181b52baf.CrossRefPubMedPubMedCentral Gorman KF, Breden F: Disproportionate body lengths correlate with idiopathic-type spinal curvature in the curveback guppy. Spine. 2010, 35 (5): 511-516. 10.1097/BRS.0b013e3181b52baf.CrossRefPubMedPubMedCentral
52.
go back to reference Fjelldal PG, Grotmol S, Kryvi H, Gjerder NR, Taranger GL, Hansen T, Porter MJR, Totland GK: Pinealectomy induces malformation of the spine and reduces mechanical strength of the vertebrae in Atlantic salmon, Salmo salar. J. Pineal. Res. 2004, 36: 132-139. 10.1046/j.1600-079X.2003.00109.x.CrossRefPubMed Fjelldal PG, Grotmol S, Kryvi H, Gjerder NR, Taranger GL, Hansen T, Porter MJR, Totland GK: Pinealectomy induces malformation of the spine and reduces mechanical strength of the vertebrae in Atlantic salmon, Salmo salar. J. Pineal. Res. 2004, 36: 132-139. 10.1046/j.1600-079X.2003.00109.x.CrossRefPubMed
53.
go back to reference Fagan AB, Kennaway DJ, Oakley AP: Pinealectomy in the chicken: a good model for scoliosis?. Eur Spine J. 2009, 18: 1154-1159. 10.1007/s00586-009-0927-7.CrossRefPubMedPubMedCentral Fagan AB, Kennaway DJ, Oakley AP: Pinealectomy in the chicken: a good model for scoliosis?. Eur Spine J. 2009, 18: 1154-1159. 10.1007/s00586-009-0927-7.CrossRefPubMedPubMedCentral
Metadata
Title
Structural and micro-anatomical changes in vertebrae associated with idiopathic-type spinal curvature in the curveback guppy model
Authors
Kristen F Gorman
Gregory R Handrigan
Ge Jin
Rob Wallis
Felix Breden
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2010
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/1748-7161-5-10

Other articles of this Issue 1/2010

Scoliosis and Spinal Disorders 1/2010 Go to the issue