Skip to main content
Top
Published in: Pathology & Oncology Research 3/2017

01-07-2017 | Original Article

Strong Correlation between the Expression Levels of HDAC4 and SIRT6 in Hematological Malignancies of the Adults

Authors: Zsuzsanna Gaál, Éva Oláh, László Rejtő, Ferenc Erdődi, László Csernoch

Published in: Pathology & Oncology Research | Issue 3/2017

Login to get access

Abstract

Histone deacetylase enzymes, confirmed to have important role in the pathogenesis of leukemia, are promising targets of epigenetic treatment. However, in acute myeloid leukemia, our knowledge on their expression levels is limited, and controversial data have been published about their potential oncogenic or tumorsuppressor properties in solid tumors. In our study, the expression levels of HDAC4 and SIRT6 were evaluated via Western blot analysis in 45 bone marrow samples (2 uninfiltrated and 43 concerned by different kinds of hematological malignancies), including 32 specimens obtained from patients with newly diagnosed AML. Significantly higher HDAC4 level was detected in case of FLT3-ITD mutation compared to the group of patients without carrying this mutation (p < 0.05). Compared to the non-infiltrated samples, the expression level of HDAC4 in AML M5 patients has been proved to be significantly higher (p < 0.05). Decreasing expression levels of both HDAC4 and SIRT6 were observed during the induction treatment of FAB M5 type AML. Strong correlation has been proved between the expression levels of HDAC4 and SIRT6 (r = 0.722 in full cohort and r = 0.794 in AML), that confirms the recently suggested cooperation between NAD+-independent and NAD+-dependent HDAC enzymes in leukemia.
Literature
1.
go back to reference Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42CrossRefPubMedPubMedCentral Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42CrossRefPubMedPubMedCentral
2.
go back to reference Linggi BE, Brandt SJ, Sun ZW, Hiebert SW (2005) Translating the histone code into leukemia. J Cell Biochem 96(5):938–950CrossRefPubMed Linggi BE, Brandt SJ, Sun ZW, Hiebert SW (2005) Translating the histone code into leukemia. J Cell Biochem 96(5):938–950CrossRefPubMed
3.
go back to reference Delcuve GP, Khan DH, Davie JR (2012) Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics 4(1):5CrossRefPubMedPubMedCentral Delcuve GP, Khan DH, Davie JR (2012) Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics 4(1):5CrossRefPubMedPubMedCentral
4.
go back to reference de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt3):737–749CrossRefPubMedPubMedCentral de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt3):737–749CrossRefPubMedPubMedCentral
5.
go back to reference Marks PA (2010) Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochim Biophys Acta 1799(10–12):717–725CrossRefPubMedPubMedCentral Marks PA (2010) Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochim Biophys Acta 1799(10–12):717–725CrossRefPubMedPubMedCentral
6.
7.
go back to reference Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: versatile regulators. Trends Genet 19(5):286–293CrossRefPubMed Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: versatile regulators. Trends Genet 19(5):286–293CrossRefPubMed
8.
10.
go back to reference Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26(37):5489–5504CrossRefPubMed Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26(37):5489–5504CrossRefPubMed
11.
go back to reference Liu H, Hu Q, D'Ercole AJ, Ye P (2009) Histone deacetylase regulates 11. Oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia 57(1):1–12CrossRefPubMedPubMedCentral Liu H, Hu Q, D'Ercole AJ, Ye P (2009) Histone deacetylase regulates 11. Oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia 57(1):1–12CrossRefPubMedPubMedCentral
12.
go back to reference Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M et al (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10(1):92–100CrossRefPubMed Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M et al (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10(1):92–100CrossRefPubMed
13.
go back to reference Smith KT, Workman JL (2009) Histone deacetylase inhibitors: anticancer compounds. Int J Biochem Cell Biol 41(1):21–25CrossRefPubMed Smith KT, Workman JL (2009) Histone deacetylase inhibitors: anticancer compounds. Int J Biochem Cell Biol 41(1):21–25CrossRefPubMed
14.
go back to reference Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM (2011) Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 29(3):255–265CrossRefPubMed Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM (2011) Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 29(3):255–265CrossRefPubMed
15.
go back to reference Khan O, La Thangue NB (2012) HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol 90(1):85–94CrossRefPubMed Khan O, La Thangue NB (2012) HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol 90(1):85–94CrossRefPubMed
16.
go back to reference Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277(1):8–21CrossRefPubMed Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277(1):8–21CrossRefPubMed
17.
go back to reference Tabe Y, Jin L, Contractor R, Gold D, Ruvolo P, Radke S et al (2007) Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1. Cell Death Differ 14(8):1443–1456CrossRefPubMed Tabe Y, Jin L, Contractor R, Gold D, Ruvolo P, Radke S et al (2007) Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1. Cell Death Differ 14(8):1443–1456CrossRefPubMed
18.
go back to reference Holmlund T, Lindberg MJ, Grander D, Wallberg AE (2013) GCN5 acetylates and regulates the stability of the oncoprotein E2A-PBX1 in acute lymphoblastic leukemia. Leukemia 27(3):578–585CrossRefPubMed Holmlund T, Lindberg MJ, Grander D, Wallberg AE (2013) GCN5 acetylates and regulates the stability of the oncoprotein E2A-PBX1 in acute lymphoblastic leukemia. Leukemia 27(3):578–585CrossRefPubMed
19.
go back to reference Di Croce L (2005) Chromatin modifying activity of leukemia associated fusion proteins. Hum Mol Genet 14(Review Issue 1):R77–R84CrossRefPubMed Di Croce L (2005) Chromatin modifying activity of leukemia associated fusion proteins. Hum Mol Genet 14(Review Issue 1):R77–R84CrossRefPubMed
20.
go back to reference Hackanson B, Rimmele L, Benkißer M, Abdelkarim M, Fliegauf M, Jung M et al (2012) HDAC6 as a target for antileukemic drugs in acute myeloid leukemia. Leuk Res 36(8):1055–1062CrossRefPubMed Hackanson B, Rimmele L, Benkißer M, Abdelkarim M, Fliegauf M, Jung M et al (2012) HDAC6 as a target for antileukemic drugs in acute myeloid leukemia. Leuk Res 36(8):1055–1062CrossRefPubMed
21.
go back to reference Novotny-Diermayr V, Hart S, Goh KC, Cheong A, Ong LC, Hentze H et al (2012) The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib(SB1518) in preclinical models of AML. Blood Cancer J 2(5):e69CrossRefPubMedPubMedCentral Novotny-Diermayr V, Hart S, Goh KC, Cheong A, Ong LC, Hentze H et al (2012) The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib(SB1518) in preclinical models of AML. Blood Cancer J 2(5):e69CrossRefPubMedPubMedCentral
22.
go back to reference Zhou L, Ruvolo VR, McQueen T, Chen W, Samudio IJ, Conneely O et al (2013) HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML. Leukemia 27(6):1358–1368CrossRefPubMed Zhou L, Ruvolo VR, McQueen T, Chen W, Samudio IJ, Conneely O et al (2013) HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML. Leukemia 27(6):1358–1368CrossRefPubMed
23.
go back to reference Tran HT, Kim HN, Lee IK, Nguyen-Pham TN, Ahn JS, Kim YK et al (2013) Improved therapeutic effect against leukemia by a combination of the histone methyltransferase inhibitor chaetocin and the histone deacetylase inhibitor trichostatin a. J Korean Med Sci 28(2):237–246CrossRefPubMedPubMedCentral Tran HT, Kim HN, Lee IK, Nguyen-Pham TN, Ahn JS, Kim YK et al (2013) Improved therapeutic effect against leukemia by a combination of the histone methyltransferase inhibitor chaetocin and the histone deacetylase inhibitor trichostatin a. J Korean Med Sci 28(2):237–246CrossRefPubMedPubMedCentral
24.
go back to reference Cea M, Soncini D, Fruscione F, Raffaghello L, Garuti A, Emionite L et al (2011) Synergistic interactions between HDAC and Sirtuin inhibitors in human leukemia cells. PLoS ONE 6(7):e22739CrossRefPubMedPubMedCentral Cea M, Soncini D, Fruscione F, Raffaghello L, Garuti A, Emionite L et al (2011) Synergistic interactions between HDAC and Sirtuin inhibitors in human leukemia cells. PLoS ONE 6(7):e22739CrossRefPubMedPubMedCentral
25.
go back to reference Van Damme M, Crompot E, Meuleman N, Mineur P, Bron D, Lagneaux L et al (2012) HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics 7(12):1403–1412CrossRefPubMedPubMedCentral Van Damme M, Crompot E, Meuleman N, Mineur P, Bron D, Lagneaux L et al (2012) HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics 7(12):1403–1412CrossRefPubMedPubMedCentral
26.
go back to reference Yu SL, Lee DC, Son JW, Park CG, Lee HY, Kang J (2013) Histone deacetylase 4 mediates SMAD family member 4 deacetylation and induces 5-fluorouracil resistance in breast cancer cells. Oncol Rep 30(3):1293–1300PubMed Yu SL, Lee DC, Son JW, Park CG, Lee HY, Kang J (2013) Histone deacetylase 4 mediates SMAD family member 4 deacetylation and induces 5-fluorouracil resistance in breast cancer cells. Oncol Rep 30(3):1293–1300PubMed
27.
go back to reference Wilson AJ, Byun DS, Nasser S, Murray LB, Ayyanar K, Arango D et al (2008) HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 19(10):4062–4075CrossRefPubMedPubMedCentral Wilson AJ, Byun DS, Nasser S, Murray LB, Ayyanar K, Arango D et al (2008) HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 19(10):4062–4075CrossRefPubMedPubMedCentral
28.
go back to reference Zhu L, Yang J, Zhao L, Yu X, Wang L, Wang F et al (2015) Expression of hMOF, but not HDAC4, is responsible for the global histone H4K16 acetylation in gastric carcinoma. Int J Oncol 46(6):2535–2545PubMed Zhu L, Yang J, Zhao L, Yu X, Wang L, Wang F et al (2015) Expression of hMOF, but not HDAC4, is responsible for the global histone H4K16 acetylation in gastric carcinoma. Int J Oncol 46(6):2535–2545PubMed
29.
go back to reference Niegisch G, Knievel J, Koch A, Hader C, Fischer U, Albers P et al (2013) Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol Oncol 31(8):1770–1779CrossRefPubMed Niegisch G, Knievel J, Koch A, Hader C, Fischer U, Albers P et al (2013) Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol Oncol 31(8):1770–1779CrossRefPubMed
30.
go back to reference Gruhn B, Naumann T, Gruner D, Walther M, Wittig S, Becker S et al (2013) The expression of histone deacetylase 4 is associated with prednisone poor-response in childhood acute lymphoblastic leukemia. Leuk Res 37(10):1200–1207CrossRefPubMed Gruhn B, Naumann T, Gruner D, Walther M, Wittig S, Becker S et al (2013) The expression of histone deacetylase 4 is associated with prednisone poor-response in childhood acute lymphoblastic leukemia. Leuk Res 37(10):1200–1207CrossRefPubMed
31.
go back to reference Sebastián C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L et al (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151(6):1185–1199CrossRefPubMedPubMedCentral Sebastián C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L et al (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151(6):1185–1199CrossRefPubMedPubMedCentral
32.
go back to reference Khongkow M, Olmos Y, Gong C, Gomes AR, Monteiro LJ, Yagüe E et al (2013) SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis 34(7):1476–1486CrossRefPubMed Khongkow M, Olmos Y, Gong C, Gomes AR, Monteiro LJ, Yagüe E et al (2013) SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis 34(7):1476–1486CrossRefPubMed
33.
go back to reference Chen X, Hao B, Liu Y, Dai D, Han G, Li Y et al (2014) The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma. Biochem Biophys Res Commun 446(1):364–369CrossRefPubMed Chen X, Hao B, Liu Y, Dai D, Han G, Li Y et al (2014) The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma. Biochem Biophys Res Commun 446(1):364–369CrossRefPubMed
34.
go back to reference Fukuda T, Wada-Hiraike O, Oda K, Tanikawa M, Makii C, Inaba K et al (2015) Putative tumor suppression function of SIRT6 in endometrial cancer. FEBS Lett 589(17):2274–2281CrossRefPubMed Fukuda T, Wada-Hiraike O, Oda K, Tanikawa M, Makii C, Inaba K et al (2015) Putative tumor suppression function of SIRT6 in endometrial cancer. FEBS Lett 589(17):2274–2281CrossRefPubMed
35.
go back to reference Zhang ZG, Qin CY (2014) Sirt6 suppresses hepatocellular carcinoma cell growth via inhibiting the extracellular signal-regulated kinase signaling pathway. Mol Med Rep 9(3):882–888PubMed Zhang ZG, Qin CY (2014) Sirt6 suppresses hepatocellular carcinoma cell growth via inhibiting the extracellular signal-regulated kinase signaling pathway. Mol Med Rep 9(3):882–888PubMed
36.
go back to reference Zhang J, Yin XJ, Xu CJ, Ning YX, Chen M, Zhang H et al (2015) The histone deacetylase SIRT6 inhibits ovarian cancer cell proliferation via down-regulation of notch 3 expression. Eur Rev Med Pharmacol Sci 19(5):818–824PubMed Zhang J, Yin XJ, Xu CJ, Ning YX, Chen M, Zhang H et al (2015) The histone deacetylase SIRT6 inhibits ovarian cancer cell proliferation via down-regulation of notch 3 expression. Eur Rev Med Pharmacol Sci 19(5):818–824PubMed
37.
go back to reference Wang JC, Kafeel MI, Avezbakiyev B, Chen C, Sun Y, Rathnasabapathy C et al (2011) Histone deacetylase in chronic lymphocytic leukemia. Oncology 81(5–6):325–329CrossRefPubMed Wang JC, Kafeel MI, Avezbakiyev B, Chen C, Sun Y, Rathnasabapathy C et al (2011) Histone deacetylase in chronic lymphocytic leukemia. Oncology 81(5–6):325–329CrossRefPubMed
38.
go back to reference Zhou J, Bi C, Chng WJ, Cheong LL, Liu SC, Mahara S et al (2011) PRL-3, a metastasis associated tyrosine phosphatase, is involved in FLT3-ITD signaling and implicated in anti-AML therapy. PLoS ONE 6(5):e19798CrossRefPubMedPubMedCentral Zhou J, Bi C, Chng WJ, Cheong LL, Liu SC, Mahara S et al (2011) PRL-3, a metastasis associated tyrosine phosphatase, is involved in FLT3-ITD signaling and implicated in anti-AML therapy. PLoS ONE 6(5):e19798CrossRefPubMedPubMedCentral
Metadata
Title
Strong Correlation between the Expression Levels of HDAC4 and SIRT6 in Hematological Malignancies of the Adults
Authors
Zsuzsanna Gaál
Éva Oláh
László Rejtő
Ferenc Erdődi
László Csernoch
Publication date
01-07-2017
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 3/2017
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-016-0139-5

Other articles of this Issue 3/2017

Pathology & Oncology Research 3/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine