Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Stroke | Research

Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling

Authors: Guillaume Durandau, Dario Farina, Guillermo Asín-Prieto, Iris Dimbwadyo-Terrer, Sergio Lerma-Lara, Jose L. Pons, Juan C. Moreno, Massimo Sartori

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

Research efforts in neurorehabilitation technologies have been directed towards creating robotic exoskeletons to restore motor function in impaired individuals. However, despite advances in mechatronics and bioelectrical signal processing, current robotic exoskeletons have had only modest clinical impact. A major limitation is the inability to enable exoskeleton voluntary control in neurologically impaired individuals. This hinders the possibility of optimally inducing the activity-driven neuroplastic changes that are required for recovery.

Methods

We have developed a patient-specific computational model of the human musculoskeletal system controlled via neural surrogates, i.e., electromyography-derived neural activations to muscles. The electromyography-driven musculoskeletal model was synthesized into a human-machine interface (HMI) that enabled poststroke and incomplete spinal cord injury patients to voluntarily control multiple joints in a multifunctional robotic exoskeleton in real time.

Results

We demonstrated patients’ control accuracy across a wide range of lower-extremity motor tasks. Remarkably, an increased level of exoskeleton assistance always resulted in a reduction in both amplitude and variability in muscle activations as well as in the mechanical moments required to perform a motor task. Since small discrepancies in onset time between human limb movement and that of the parallel exoskeleton would potentially increase human neuromuscular effort, these results demonstrate that the developed HMI precisely synchronizes the device actuation with residual voluntary muscle contraction capacity in neurologically impaired patients.

Conclusions

Continuous voluntary control of robotic exoskeletons (i.e. event-free and task-independent) has never been demonstrated before in populations with paretic and spastic-like muscle activity, such as those investigated in this study. Our proposed methodology may open new avenues for harnessing residual neuromuscular function in neurologically impaired individuals via symbiotic wearable robots.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, et al. Human-in-the-loop optimization of exoskeleton assistance during walking. Science (80- ). 2017;356(6344):1280–3.CrossRef Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, et al. Human-in-the-loop optimization of exoskeleton assistance during walking. Science (80- ). 2017;356(6344):1280–3.CrossRef
2.
go back to reference Reinkensmeyer D, Dietz V. Neurorehabilitation technology, second edition; 2016. p. 1–647.CrossRef Reinkensmeyer D, Dietz V. Neurorehabilitation technology, second edition; 2016. p. 1–647.CrossRef
3.
go back to reference Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.PubMedCrossRef Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.PubMedCrossRef
4.
go back to reference Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.PubMedCrossRef Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.PubMedCrossRef
5.
go back to reference Swinnen E, Duerinck S, Baeyens J, Meeusen R, Kerckhofs E. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med. 2010;42(6):520–6.PubMedCrossRef Swinnen E, Duerinck S, Baeyens J, Meeusen R, Kerckhofs E. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med. 2010;42(6):520–6.PubMedCrossRef
7.
go back to reference Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134:1591–609.PubMedPubMedCentralCrossRef Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134:1591–609.PubMedPubMedCentralCrossRef
9.
go back to reference Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–33.PubMedCrossRef Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–33.PubMedCrossRef
10.
go back to reference Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91(11):911–21.PubMedCrossRef Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91(11):911–21.PubMedCrossRef
11.
go back to reference Jezernik S, Colombo G, Keller T, Frueh H, Morari M. Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation. 2003;6(2):108–15.PubMedCrossRef Jezernik S, Colombo G, Keller T, Frueh H, Morari M. Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation. 2003;6(2):108–15.PubMedCrossRef
12.
go back to reference Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van Der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.PubMedCrossRef Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van Der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.PubMedCrossRef
13.
go back to reference Westlake KP, Patten C. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6(1):18.PubMedPubMedCentralCrossRef Westlake KP, Patten C. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6(1):18.PubMedPubMedCentralCrossRef
14.
go back to reference Yan T, Cempini M, Oddo CM, Vitiello N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Rob Auton Syst. 2015;64:120–36.CrossRef Yan T, Cempini M, Oddo CM, Vitiello N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Rob Auton Syst. 2015;64:120–36.CrossRef
15.
go back to reference Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, et al. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil. 2015;12(1):54.PubMedPubMedCentralCrossRef Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, et al. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil. 2015;12(1):54.PubMedPubMedCentralCrossRef
16.
go back to reference Huo W, Mohammed S, Moreno JC, Amirat Y. Lower limb wearable robots for assistance and rehabilitation: a state of the art. IEEE Syst J. 2014;10(3):1068-81.CrossRef Huo W, Mohammed S, Moreno JC, Amirat Y. Lower limb wearable robots for assistance and rehabilitation: a state of the art. IEEE Syst J. 2014;10(3):1068-81.CrossRef
17.
go back to reference Attneave F, M B, Hebb DO. The organization of behavior; a neuropsychological theory. Am J Psychol. 1950;63(4):633.CrossRef Attneave F, M B, Hebb DO. The organization of behavior; a neuropsychological theory. Am J Psychol. 1950;63(4):633.CrossRef
18.
go back to reference Panizzolo FA, Galiana I, Asbeck AT, Siviy C, Schmidt K, Holt KG, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J Neuroeng Rehabil. 2016;13(1):43.PubMedPubMedCentralCrossRef Panizzolo FA, Galiana I, Asbeck AT, Siviy C, Schmidt K, Holt KG, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J Neuroeng Rehabil. 2016;13(1):43.PubMedPubMedCentralCrossRef
20.
go back to reference Cajigas I, Koenig A, Severini G, Smith M, Bonato P. Robot-induced perturbations of human walking reveal a selective generation of motor adaptation. Sci Robot. 2017;2(6):1–10.CrossRef Cajigas I, Koenig A, Severini G, Smith M, Bonato P. Robot-induced perturbations of human walking reveal a selective generation of motor adaptation. Sci Robot. 2017;2(6):1–10.CrossRef
22.
go back to reference Kang J, Martelli D, Vashista V, Martinez-Hernandez I, Kim H, Agrawal SK. Robot-driven downward pelvic pull to improve crouch gait in children with cerebral palsy. Sci Robot. 2017;2(8):eaan2634.CrossRef Kang J, Martelli D, Vashista V, Martinez-Hernandez I, Kim H, Agrawal SK. Robot-driven downward pelvic pull to improve crouch gait in children with cerebral palsy. Sci Robot. 2017;2(8):eaan2634.CrossRef
23.
go back to reference Kazerooni H, Racine J-L, Steger R. On the control of the Berkeley lower extremity exoskeleton (BLEEX). In: Proc 2005 IEEE Int Conf Robot Autom.; 2005. p. 4353–60.CrossRef Kazerooni H, Racine J-L, Steger R. On the control of the Berkeley lower extremity exoskeleton (BLEEX). In: Proc 2005 IEEE Int Conf Robot Autom.; 2005. p. 4353–60.CrossRef
24.
go back to reference Huang R, Cheng H, Chen QM, Tran HT, Lin XC. Interactive learning for sensitivity factors of a human-powered augmentation lower exoskeleton. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Germany: IEEE; 2015. p. 6409–15. Huang R, Cheng H, Chen QM, Tran HT, Lin XC. Interactive learning for sensitivity factors of a human-powered augmentation lower exoskeleton. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Germany: IEEE; 2015. p. 6409–15.
25.
go back to reference Sartori M, Llyod DG, Farina D. Neural data-driven musculoskeletal modeling for personalized neurorehabilitation technologies. IEEE Trans Biomed Eng. 2016;63(5):879–93.PubMedCrossRef Sartori M, Llyod DG, Farina D. Neural data-driven musculoskeletal modeling for personalized neurorehabilitation technologies. IEEE Trans Biomed Eng. 2016;63(5):879–93.PubMedCrossRef
26.
go back to reference Yang Z, Gu W, Zhang J, Gui L. Sensitivity amplification control of exoskeleton suit. In: Force control theory and method of human load carrying exoskeleton suit. Berlin: Springer Berlin Heidelberg; 2017. p. 73–101.CrossRef Yang Z, Gu W, Zhang J, Gui L. Sensitivity amplification control of exoskeleton suit. In: Force control theory and method of human load carrying exoskeleton suit. Berlin: Springer Berlin Heidelberg; 2017. p. 73–101.CrossRef
27.
go back to reference Kawamoto H, Sankai Y. Power assist method based on phase sequence and muscle force condition for HAL. Adv Robot. 2005;19(7):717–34.CrossRef Kawamoto H, Sankai Y. Power assist method based on phase sequence and muscle force condition for HAL. Adv Robot. 2005;19(7):717–34.CrossRef
28.
go back to reference Kiguchi K, Tanaka T, Fukuda T. Neuro-fuzzy control of a robotic exoskeleton with EMG signals. Informatica. 2004;12(4):481–90. Kiguchi K, Tanaka T, Fukuda T. Neuro-fuzzy control of a robotic exoskeleton with EMG signals. Informatica. 2004;12(4):481–90.
29.
30.
go back to reference Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study; 2015. p. 1–13. Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study; 2015. p. 1–13.
31.
go back to reference McCain EM, Dick TJM, Giest TN, Nuckols RW, Lewek MD, Saul KR, et al. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. J Neuroeng Rehabil. 2019;16(1):1–12.CrossRef McCain EM, Dick TJM, Giest TN, Nuckols RW, Lewek MD, Saul KR, et al. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. J Neuroeng Rehabil. 2019;16(1):1–12.CrossRef
32.
33.
go back to reference Zhou P, Suresh NL, Rymer WZ. Model based sensitivity analysis of EMG-force relation with respect to motor unit properties: applications to muscle paresis in stroke. Ann Biomed Eng. 2007;35(9):1521–31.PubMedCrossRef Zhou P, Suresh NL, Rymer WZ. Model based sensitivity analysis of EMG-force relation with respect to motor unit properties: applications to muscle paresis in stroke. Ann Biomed Eng. 2007;35(9):1521–31.PubMedCrossRef
34.
go back to reference Kiguchi K, Imada Y, Liyanage M. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. In: Annual international conference of the IEEE engineering in medicine and biology - proceedings: IEEE; 2007. p. 3040–3. Kiguchi K, Imada Y, Liyanage M. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. In: Annual international conference of the IEEE engineering in medicine and biology - proceedings: IEEE; 2007. p. 3040–3.
35.
go back to reference Sartori M, Yavuz US, Farina D. In vivo neuromechanics: decoding causal motor neuron behavior with resulting musculoskeletal function. Sci Rep. 2017;7:13465.PubMedPubMedCentralCrossRef Sartori M, Yavuz US, Farina D. In vivo neuromechanics: decoding causal motor neuron behavior with resulting musculoskeletal function. Sci Rep. 2017;7:13465.PubMedPubMedCentralCrossRef
37.
go back to reference Jochumsen M, Niazi IK, Mrachacz-Kersting N, Farina D, Dremstrup K. Detection and classification of movement-related cortical potentials associated with task force and speed. J Neural Eng. 2013;10(5):056015.PubMedCrossRef Jochumsen M, Niazi IK, Mrachacz-Kersting N, Farina D, Dremstrup K. Detection and classification of movement-related cortical potentials associated with task force and speed. J Neural Eng. 2013;10(5):056015.PubMedCrossRef
38.
go back to reference Noda T, Sugimoto N, Furukawa J, Sato MA, Hyon SH, Morimoto J. Brain-controlled exoskeleton robot for BMI rehabilitation. In: IEEE-RAS Int Conf Humanoid Robot; 2012. p. 21–7. Noda T, Sugimoto N, Furukawa J, Sato MA, Hyon SH, Morimoto J. Brain-controlled exoskeleton robot for BMI rehabilitation. In: IEEE-RAS Int Conf Humanoid Robot; 2012. p. 21–7.
39.
go back to reference Kwak N-S, Müller K-R, Lee S-W. A lower limb exoskeleton control system based on steady state visual evoked potentials. J Neural Eng. 2015;12(5):056009.PubMedCrossRef Kwak N-S, Müller K-R, Lee S-W. A lower limb exoskeleton control system based on steady state visual evoked potentials. J Neural Eng. 2015;12(5):056009.PubMedCrossRef
40.
go back to reference Zhu F, Bortole M, Venkatakrishnan A, Hernandez, Francisco G, Pons J. Human-machine system for the H2 lower limb exoskeleton: neural decoding of robot-assisted walking from scalp EEG for stroke rehabilitation. Neuromodulation. 2014;17(5):e75. Zhu F, Bortole M, Venkatakrishnan A, Hernandez, Francisco G, Pons J. Human-machine system for the H2 lower limb exoskeleton: neural decoding of robot-assisted walking from scalp EEG for stroke rehabilitation. Neuromodulation. 2014;17(5):e75.
41.
go back to reference Úbeda A, Azorín JM, Farina D, Sartori M. Estimation of neuromuscular primitives from EEG slow cortical potentials in incomplete spinal cord injury individuals for a new class of brain-machine interfaces. Front Comput Neurosci. 2018;12:3.PubMedPubMedCentralCrossRef Úbeda A, Azorín JM, Farina D, Sartori M. Estimation of neuromuscular primitives from EEG slow cortical potentials in incomplete spinal cord injury individuals for a new class of brain-machine interfaces. Front Comput Neurosci. 2018;12:3.PubMedPubMedCentralCrossRef
42.
go back to reference Fleischer C, Hommel G. A human-exoskeleton interface utilizing electromyography. IEEE Trans Robot. 2008;24(4):872–82.CrossRef Fleischer C, Hommel G. A human-exoskeleton interface utilizing electromyography. IEEE Trans Robot. 2008;24(4):872–82.CrossRef
43.
go back to reference Cavallaro EE, Rosen J, Perry JC, Burns S. Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans Biomed Eng. 2006;53(11):2387–96.PubMedCrossRef Cavallaro EE, Rosen J, Perry JC, Burns S. Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans Biomed Eng. 2006;53(11):2387–96.PubMedCrossRef
44.
go back to reference Sartori M, Durandau G, Došen S, Farina D. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. J Neural Eng. 2018;15(6):66026.CrossRef Sartori M, Durandau G, Došen S, Farina D. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. J Neural Eng. 2018;15(6):66026.CrossRef
45.
go back to reference Pizzolato C, Lloyd DG, Sartori M, Ceseracciu E, Besier TF, Fregly BJ, et al. CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. J Biomech. 2015;48(14):3929–36.PubMedPubMedCentralCrossRef Pizzolato C, Lloyd DG, Sartori M, Ceseracciu E, Besier TF, Fregly BJ, et al. CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. J Biomech. 2015;48(14):3929–36.PubMedPubMedCentralCrossRef
46.
go back to reference Sartori M, Reggiani M, Farina D, Lloyd DG. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PloS one. 2012;7(12):e52618.PubMedPubMedCentralCrossRef Sartori M, Reggiani M, Farina D, Lloyd DG. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PloS one. 2012;7(12):e52618.PubMedPubMedCentralCrossRef
47.
go back to reference Durandau G, Farina D, Sartori M. Robust real-time musculoskeletal modeling driven by electromyograms. IEEE Trans Biomed Eng. 2017. Durandau G, Farina D, Sartori M. Robust real-time musculoskeletal modeling driven by electromyograms. IEEE Trans Biomed Eng. 2017.
48.
go back to reference Sartori M, Reggiani M, van den Bogert AJ, Lloyd DG. Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-splines. J Biomech. 2012;45(3):595–601.PubMedCrossRef Sartori M, Reggiani M, van den Bogert AJ, Lloyd DG. Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-splines. J Biomech. 2012;45(3):595–601.PubMedCrossRef
49.
go back to reference Sartori M, Maculan M, Pizzolato C, Reggiani M, Farina D, Claudio P, et al. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion. J Neurophysiol. 2015;114(4):2509–27.PubMedPubMedCentralCrossRef Sartori M, Maculan M, Pizzolato C, Reggiani M, Farina D, Claudio P, et al. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion. J Neurophysiol. 2015;114(4):2509–27.PubMedPubMedCentralCrossRef
50.
go back to reference Sartori M, Farina D, Lloyd DG. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J Biomech. 2014;47(15):3613–21.PubMedCrossRef Sartori M, Farina D, Lloyd DG. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J Biomech. 2014;47(15):3613–21.PubMedCrossRef
51.
go back to reference Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. Biomed Eng IEEE Trans. 2007;54(11):1940–50.CrossRef Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. Biomed Eng IEEE Trans. 2007;54(11):1940–50.CrossRef
52.
go back to reference Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37(8):757–67.PubMedCrossRef Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37(8):757–67.PubMedCrossRef
53.
go back to reference Winby CR, Lloyd DG, Besier TF, Kirk TB. Muscle and external load contribution to knee joint contact loads during normal gait. J Biomech. 2009;42(14):2294–300.PubMedCrossRef Winby CR, Lloyd DG, Besier TF, Kirk TB. Muscle and external load contribution to knee joint contact loads during normal gait. J Biomech. 2009;42(14):2294–300.PubMedCrossRef
54.
go back to reference Adamson J, Beswick A, Ebrahim S. Is stroke the most common cause of disability? J Stroke Cerebrovasc Dis. 2004;13(4):171–7.PubMedCrossRef Adamson J, Beswick A, Ebrahim S. Is stroke the most common cause of disability? J Stroke Cerebrovasc Dis. 2004;13(4):171–7.PubMedCrossRef
55.
go back to reference Oliphant TE. Python for scientific computing. Comput Sci Eng. 2007;9(3):10–20.CrossRef Oliphant TE. Python for scientific computing. Comput Sci Eng. 2007;9(3):10–20.CrossRef
56.
go back to reference Nordez A, Gallot T, Catheline S, Guével A, Cornu C, Hug F. Electromechanical delay revisited using very high frame rate ultrasound. J Appl Physiol. 2009;106(6):1970–5.PubMedCrossRef Nordez A, Gallot T, Catheline S, Guével A, Cornu C, Hug F. Electromechanical delay revisited using very high frame rate ultrasound. J Appl Physiol. 2009;106(6):1970–5.PubMedCrossRef
57.
go back to reference Farina D, Sartori M. Surface electromyography for man-machine interfacing in rehabilitation technologies. In: Farina D, Merletti R, editors. Surface electromyography: physiology, engineering and applications. 2nd ed: IEEE/Wiley; 2016. p. 540–60. Farina D, Sartori M. Surface electromyography for man-machine interfacing in rehabilitation technologies. In: Farina D, Merletti R, editors. Surface electromyography: physiology, engineering and applications. 2nd ed: IEEE/Wiley; 2016. p. 540–60.
58.
go back to reference Parker P, Englehart K, Hudgins B. Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol. 2006;16:541–8.PubMedCrossRef Parker P, Englehart K, Hudgins B. Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol. 2006;16:541–8.PubMedCrossRef
59.
go back to reference Chang S-H, Francisco GE, Zhou P, Rymer WZ, Li S. Spasticity, weakness, force variability and sustained spontaneous motor unit discharges of resting spastic-paretic biceps brachii muscles in chronic stroke. Muscle Nerve. 2013;48(1):85–92.PubMedPubMedCentralCrossRef Chang S-H, Francisco GE, Zhou P, Rymer WZ, Li S. Spasticity, weakness, force variability and sustained spontaneous motor unit discharges of resting spastic-paretic biceps brachii muscles in chronic stroke. Muscle Nerve. 2013;48(1):85–92.PubMedPubMedCentralCrossRef
60.
go back to reference Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, et al. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008;22(3):305–10.PubMedPubMedCentralCrossRef Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, et al. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008;22(3):305–10.PubMedPubMedCentralCrossRef
61.
go back to reference Cohen JW, Ivanova TD, Brouwer B, Miller KJ, Bryant D, Garland SJ. Do performance measures of strength, balance, and mobility predict quality of life and community reintegration after stroke? Arch Phys Med Rehabil. 2018;99(4):713–9.PubMedCrossRef Cohen JW, Ivanova TD, Brouwer B, Miller KJ, Bryant D, Garland SJ. Do performance measures of strength, balance, and mobility predict quality of life and community reintegration after stroke? Arch Phys Med Rehabil. 2018;99(4):713–9.PubMedCrossRef
62.
go back to reference Katzan IL, Thompson NR, Uchino K, Lapin B. The most affected health domains after ischemic stroke. Neurology. 2018;90(16):e1364–71.PubMedCrossRef Katzan IL, Thompson NR, Uchino K, Lapin B. The most affected health domains after ischemic stroke. Neurology. 2018;90(16):e1364–71.PubMedCrossRef
63.
go back to reference Mahendran N, Kuys SS, Brauer SG. Recovery of ambulation activity across the first six months post-stroke. Gait Posture. 2016;49:271–6.PubMedCrossRef Mahendran N, Kuys SS, Brauer SG. Recovery of ambulation activity across the first six months post-stroke. Gait Posture. 2016;49:271–6.PubMedCrossRef
Metadata
Title
Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling
Authors
Guillaume Durandau
Dario Farina
Guillermo Asín-Prieto
Iris Dimbwadyo-Terrer
Sergio Lerma-Lara
Jose L. Pons
Juan C. Moreno
Massimo Sartori
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Stroke
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0559-z

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue