Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2022

01-12-2022 | Stroke | Research

Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice

Authors: Lu Luo, Meixi Liu, Yunhui Fan, Jingjun Zhang, Li Liu, Yun Li, Qiqi Zhang, Hongyu Xie, Congyu Jiang, Junfa Wu, Xiao Xiao, Yi Wu

Published in: Journal of Neuroinflammation | Issue 1/2022

Login to get access

Abstract

Background

Neuronal pyroptosis and neuroinflammation with excess microglial activation are widely involved in the early pathological process of ischemic stroke. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neuromodulatory technique, has recently been reported to be anti-inflammatory and regulate microglial function. However, few studies have elucidated the role and mechanism of rTMS underlying regulating neuronal pyroptosis and microglial polarization.

Methods

We evaluated the motor function in middle cerebral artery occlusion/reperfusion (MCAO/r) injury mice after 1-week intermittent theta-burst rTMS (iTBS) treatment in the early phase with or without depletion of microglia by colony-stimulating factor 1 receptor (CSF1R) inhibitor treatment, respectively. We further explored the morphological and molecular biological alterations associated with neuronal pyroptosis and microglial polarization via Nissl, EdU, TTC, TUNEL staining, electron microscopy, multiplex cytokine bioassays, western blot assays, immunofluorescence staining and RNA sequencing.

Results

ITBS significantly protected against cerebral ischemia/reperfusion (I/R) injury-induced locomotor deficits and neuronal damage, which probably relied on the regulation of innate immune and inflammatory responses, as evidenced by RNA sequencing analysis. The peak of pyroptosis was confirmed to be later than that of apoptosis during the early phase of stroke, and pyroptosis was mainly located and more severe in the peri-infarcted area compared with apoptosis. Multiplex cytokine bioassays showed that iTBS significantly ameliorated the high levels of IL-1β, IL-17A, TNF-α, IFN-γ in MCAO/r group and elevated the level of IL-10. ITBS inhibited the expression of neuronal pyroptosis-associated proteins (i.e., Caspase1, IL-1β, IL-18, ASC, GSDMD, NLRP1) in the peri-infarcted area rather than at the border of infarcted core. KEGG enrichment analysis and further studies demonstrated that iTBS significantly shifted the microglial M1/M2 phenotype balance by curbing proinflammatory M1 activation (Iba1+/CD86+) and enhancing the anti-inflammatory M2 activation (Iba1+/CD206+) in peri-infarcted area via inhibiting TLR4/NFκB/NLRP3 signaling pathway. Depletion of microglia using CSF1R inhibitor (PLX3397) eliminated the motor functional improvements after iTBS treatment.

Conclusions

rTMS could alleviate cerebral I/R injury induced locomotor deficits and neuronal pyroptosis by modulating the microglial polarization. It is expected that these data will provide novel insights into the mechanisms of rTMS protecting against cerebral I/R injury and potential targets underlying neuronal pyroptosis in the early phase of stroke.
Appendix
Available only for authorised users
Literature
1.
go back to reference Richards CL, Malouin F, Nadeau S. Stroke rehabilitation: clinical picture, assessment, and therapeutic challenge. Prog Brain Res. 2015;218:253–80.PubMedCrossRef Richards CL, Malouin F, Nadeau S. Stroke rehabilitation: clinical picture, assessment, and therapeutic challenge. Prog Brain Res. 2015;218:253–80.PubMedCrossRef
3.
go back to reference Smith M, Reddy U, Robba C, Sharma D, Citerio G. Acute ischaemic stroke: challenges for the intensivist. Intensive Care Med. 2019;45(9):1177–89.PubMedCrossRef Smith M, Reddy U, Robba C, Sharma D, Citerio G. Acute ischaemic stroke: challenges for the intensivist. Intensive Care Med. 2019;45(9):1177–89.PubMedCrossRef
4.
go back to reference Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020;21(18):6454.PubMedCentralCrossRef Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020;21(18):6454.PubMedCentralCrossRef
5.
go back to reference Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–54.PubMedCrossRef Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–54.PubMedCrossRef
6.
go back to reference Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A. Inflammasome: its role in traumatic brain and spinal cord injury. J Cell Physiol. 2018;233(7):5160–9.PubMedCrossRef Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A. Inflammasome: its role in traumatic brain and spinal cord injury. J Cell Physiol. 2018;233(7):5160–9.PubMedCrossRef
7.
go back to reference Ye A, Li W, Zhou L, Ao L, Fang W, Li Y. Targeting pyroptosis to regulate ischemic stroke injury: molecular mechanisms and preclinical evidences. Brain Res Bull. 2020;165:146–60.PubMedCrossRef Ye A, Li W, Zhou L, Ao L, Fang W, Li Y. Targeting pyroptosis to regulate ischemic stroke injury: molecular mechanisms and preclinical evidences. Brain Res Bull. 2020;165:146–60.PubMedCrossRef
8.
go back to reference Li X, Yu Z, Zong W, Chen P, Li J, Wang M, Ding F, Xie M, Wang W, Luo X. Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J Neuroinflammation. 2020;17(1):263.PubMedPubMedCentralCrossRef Li X, Yu Z, Zong W, Chen P, Li J, Wang M, Ding F, Xie M, Wang W, Luo X. Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J Neuroinflammation. 2020;17(1):263.PubMedPubMedCentralCrossRef
9.
go back to reference Yu F, Huang T, Ran Y, Li D, Ye L, Tian G, Xi J, Liu Z. New insights into the roles of microglial regulation in brain plasticity-dependent stroke recovery. Front Cell Neurosci. 2021;15: 727899.PubMedPubMedCentralCrossRef Yu F, Huang T, Ran Y, Li D, Ye L, Tian G, Xi J, Liu Z. New insights into the roles of microglial regulation in brain plasticity-dependent stroke recovery. Front Cell Neurosci. 2021;15: 727899.PubMedPubMedCentralCrossRef
10.
go back to reference Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation. 2011;8:174.PubMedPubMedCentralCrossRef Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation. 2011;8:174.PubMedPubMedCentralCrossRef
11.
go back to reference Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063–70.PubMedCrossRef Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063–70.PubMedCrossRef
12.
go back to reference Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol. 2020;131(2):474–528.PubMedCrossRef Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol. 2020;131(2):474–528.PubMedCrossRef
13.
go back to reference Yoon KJ, Lee YT, Han TR. Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis? Exp Brain Res. 2011;214(4):549–56.PubMedCrossRef Yoon KJ, Lee YT, Han TR. Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis? Exp Brain Res. 2011;214(4):549–56.PubMedCrossRef
14.
go back to reference Iyer PC, Madhavan S. Non-invasive brain stimulation in the modulation of cerebral blood flow after stroke: a systematic review of Transcranial Doppler studies. Clin Neurophysiol. 2018;129(12):2544–51.PubMedCrossRef Iyer PC, Madhavan S. Non-invasive brain stimulation in the modulation of cerebral blood flow after stroke: a systematic review of Transcranial Doppler studies. Clin Neurophysiol. 2018;129(12):2544–51.PubMedCrossRef
15.
go back to reference Sasso V, Bisicchia E, Latini L, Ghiglieri V, Cacace F, Carola V, Molinari M, Viscomi MT. Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury. J Neuroinflammation. 2016;13(1):150.PubMedPubMedCentralCrossRef Sasso V, Bisicchia E, Latini L, Ghiglieri V, Cacace F, Carola V, Molinari M, Viscomi MT. Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury. J Neuroinflammation. 2016;13(1):150.PubMedPubMedCentralCrossRef
16.
go back to reference Zhang KY, Rui G, Zhang JP, Guo L, An GZ, Lin JJ, He W, Ding GR. Cathodal tDCS exerts neuroprotective effect in rat brain after acute ischemic stroke. BMC Neurosci. 2020;21(1):21.PubMedPubMedCentralCrossRef Zhang KY, Rui G, Zhang JP, Guo L, An GZ, Lin JJ, He W, Ding GR. Cathodal tDCS exerts neuroprotective effect in rat brain after acute ischemic stroke. BMC Neurosci. 2020;21(1):21.PubMedPubMedCentralCrossRef
17.
go back to reference Wang J, Li G, Deng L, Mamtilahun M, Jiang L, Qiu W, Zheng H, Sun J, Xie Q, Yang GY. Transcranial focused ultrasound stimulation improves neurorehabilitation after middle cerebral artery occlusion in mice. Aging Dis. 2021;12(1):50–60.PubMedPubMedCentralCrossRef Wang J, Li G, Deng L, Mamtilahun M, Jiang L, Qiu W, Zheng H, Sun J, Xie Q, Yang GY. Transcranial focused ultrasound stimulation improves neurorehabilitation after middle cerebral artery occlusion in mice. Aging Dis. 2021;12(1):50–60.PubMedPubMedCentralCrossRef
18.
go back to reference Hong Y, Liu Q, Peng M, Bai M, Li J, Sun R, Guo H, Xu P, Xie Y, Li Y, et al. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J Neuroinflammation. 2020;17(1):150.PubMedPubMedCentralCrossRef Hong Y, Liu Q, Peng M, Bai M, Li J, Sun R, Guo H, Xu P, Xie Y, Li Y, et al. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J Neuroinflammation. 2020;17(1):150.PubMedPubMedCentralCrossRef
19.
go back to reference Liu MX, Luo L, Fu JH, He JY, Chen MY, He ZJ, Jia J. Exercise-induced neuroprotection against cerebral ischemia/reperfusion injury is mediated via alleviating inflammasome-induced pyroptosis. Exp Neurol. 2022;349: 113952.PubMedCrossRef Liu MX, Luo L, Fu JH, He JY, Chen MY, He ZJ, Jia J. Exercise-induced neuroprotection against cerebral ischemia/reperfusion injury is mediated via alleviating inflammasome-induced pyroptosis. Exp Neurol. 2022;349: 113952.PubMedCrossRef
20.
go back to reference Luo L, Liu M, Xie H, Fan Y, Zhang J, Liu L, Li Y, Zhang Q, Wu J, Jiang C, et al. High-intensity interval training improves physical function, prevents muscle loss, and modulates macrophage-mediated inflammation in skeletal muscle of cerebral ischemic mice. Mediators Inflamm. 2021;2021:1849428.PubMedPubMedCentral Luo L, Liu M, Xie H, Fan Y, Zhang J, Liu L, Li Y, Zhang Q, Wu J, Jiang C, et al. High-intensity interval training improves physical function, prevents muscle loss, and modulates macrophage-mediated inflammation in skeletal muscle of cerebral ischemic mice. Mediators Inflamm. 2021;2021:1849428.PubMedPubMedCentral
21.
go back to reference Zhang Q, Wu JF, Shi QL, Li MY, Wang CJ, Wang X, Wang WY, Wu Y. The Neuronal activation of deep cerebellar nuclei is essential for environmental enrichment-induced post-stroke motor recovery. Aging Dis. 2019;10(3):530–43.PubMedPubMedCentralCrossRef Zhang Q, Wu JF, Shi QL, Li MY, Wang CJ, Wang X, Wang WY, Wu Y. The Neuronal activation of deep cerebellar nuclei is essential for environmental enrichment-induced post-stroke motor recovery. Aging Dis. 2019;10(3):530–43.PubMedPubMedCentralCrossRef
22.
go back to reference Adebiyi O, Adigun K, Folarin O, Olopade J, Olayemi F. Administration of ethanolic extract of Erythrophleum ivorense (A Chev.) stem bark to male Wistar rats alters brain areas involved in motor coordination, behavior, and memory. J Ethnopharmacol. 2020;253:112650.PubMedCrossRef Adebiyi O, Adigun K, Folarin O, Olopade J, Olayemi F. Administration of ethanolic extract of Erythrophleum ivorense (A Chev.) stem bark to male Wistar rats alters brain areas involved in motor coordination, behavior, and memory. J Ethnopharmacol. 2020;253:112650.PubMedCrossRef
23.
go back to reference Caballero-Garrido E, Pena-Philippides JC, Galochkina Z, Erhardt E, Roitbak T. Characterization of long-term gait deficits in mouse dMCAO, using the CatWalk system. Behav Brain Res. 2017;331:282–96.PubMedPubMedCentralCrossRef Caballero-Garrido E, Pena-Philippides JC, Galochkina Z, Erhardt E, Roitbak T. Characterization of long-term gait deficits in mouse dMCAO, using the CatWalk system. Behav Brain Res. 2017;331:282–96.PubMedPubMedCentralCrossRef
24.
go back to reference Luo L, Li C, Deng Y, Wang Y, Meng P, Wang Q. High-intensity interval training on neuroplasticity, balance between brain-derived neurotrophic factor and precursor brain-derived neurotrophic factor in poststroke depression rats. J Stroke Cerebrovasc Dis. 2019;28(3):672–82.PubMedCrossRef Luo L, Li C, Deng Y, Wang Y, Meng P, Wang Q. High-intensity interval training on neuroplasticity, balance between brain-derived neurotrophic factor and precursor brain-derived neurotrophic factor in poststroke depression rats. J Stroke Cerebrovasc Dis. 2019;28(3):672–82.PubMedCrossRef
25.
go back to reference Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30(15):2114–20.CrossRef Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30(15):2114–20.CrossRef
27.
go back to reference Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12(3):R22.PubMedPubMedCentralCrossRef Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12(3):R22.PubMedPubMedCentralCrossRef
28.
go back to reference Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.PubMedPubMedCentralCrossRef Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.PubMedPubMedCentralCrossRef
29.
go back to reference Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). 2015;31(2):166–9.CrossRef Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). 2015;31(2):166–9.CrossRef
30.
31.
go back to reference Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480-484.PubMedCrossRef Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480-484.PubMedCrossRef
33.
go back to reference Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000;45(3):528–37.PubMedCrossRef Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000;45(3):528–37.PubMedCrossRef
34.
go back to reference Antonopoulos CN, Kadoglou NP. Biomarkers in silent traumatic brain injury. Curr Pharm Des. 2016;22(6):680–7.PubMedCrossRef Antonopoulos CN, Kadoglou NP. Biomarkers in silent traumatic brain injury. Curr Pharm Des. 2016;22(6):680–7.PubMedCrossRef
35.
go back to reference Bernhardt J, Hayward KS, Kwakkel G, Ward NS, Wolf SL, Borschmann K, Krakauer JW, Boyd LA, Carmichael ST, Corbett D, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Neurorehabil Neural Repair. 2017;31(9):793–9.PubMedCrossRef Bernhardt J, Hayward KS, Kwakkel G, Ward NS, Wolf SL, Borschmann K, Krakauer JW, Boyd LA, Carmichael ST, Corbett D, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Neurorehabil Neural Repair. 2017;31(9):793–9.PubMedCrossRef
36.
go back to reference de Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab. 2014;34(3):369–75.PubMedPubMedCentralCrossRef de Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab. 2014;34(3):369–75.PubMedPubMedCentralCrossRef
37.
go back to reference Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ, Zhao J. Microglial polarization: novel therapeutic strategy against ischemic stroke. Aging Dis. 2021;12(2):466–79.PubMedPubMedCentralCrossRef Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ, Zhao J. Microglial polarization: novel therapeutic strategy against ischemic stroke. Aging Dis. 2021;12(2):466–79.PubMedPubMedCentralCrossRef
38.
go back to reference Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors–from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev. 2016;15(1):1–8.PubMedCrossRef Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors–from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev. 2016;15(1):1–8.PubMedCrossRef
40.
go back to reference Caglayan AB, Beker MC, Caglayan B, Yalcin E, Caglayan A, Yulug B, Hanoglu L, Kutlu S, Doeppner TR, Hermann DM, et al. Acute and post-acute neuromodulation induces stroke recovery by promoting survival signaling, neurogenesis, and pyramidal tract plasticity. Front Cell Neurosci. 2019;13:144.PubMedPubMedCentralCrossRef Caglayan AB, Beker MC, Caglayan B, Yalcin E, Caglayan A, Yulug B, Hanoglu L, Kutlu S, Doeppner TR, Hermann DM, et al. Acute and post-acute neuromodulation induces stroke recovery by promoting survival signaling, neurogenesis, and pyramidal tract plasticity. Front Cell Neurosci. 2019;13:144.PubMedPubMedCentralCrossRef
41.
go back to reference Sasaki N, Mizutani S, Kakuda W, Abo M. Comparison of the effects of high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. J Stroke Cerebrovasc Dis. 2013;22(4):413–8.PubMedCrossRef Sasaki N, Mizutani S, Kakuda W, Abo M. Comparison of the effects of high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. J Stroke Cerebrovasc Dis. 2013;22(4):413–8.PubMedCrossRef
42.
go back to reference Guan YZ, Li J, Zhang XW, Wu S, Du H, Cui LY, Zhang WH. Effectiveness of repetitive transcranial magnetic stimulation (rTMS) after acute stroke: a one-year longitudinal randomized trial. CNS Neurosci Ther. 2017;23(12):940–6.PubMedPubMedCentralCrossRef Guan YZ, Li J, Zhang XW, Wu S, Du H, Cui LY, Zhang WH. Effectiveness of repetitive transcranial magnetic stimulation (rTMS) after acute stroke: a one-year longitudinal randomized trial. CNS Neurosci Ther. 2017;23(12):940–6.PubMedPubMedCentralCrossRef
43.
go back to reference Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke—implications for treatment. Nat Rev Neurol. 2019;15(8):473–81.PubMedCrossRef Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke—implications for treatment. Nat Rev Neurol. 2019;15(8):473–81.PubMedCrossRef
45.
go back to reference Yoon KJ, Lee YT, Chung PW, Lee YK, Kim DY, Chun MH. Effects of repetitive transcranial magnetic stimulation on behavioral recovery during early stage of traumatic brain injury in rats. J Korean Med Sci. 2015;30(10):1496–502.PubMedPubMedCentralCrossRef Yoon KJ, Lee YT, Chung PW, Lee YK, Kim DY, Chun MH. Effects of repetitive transcranial magnetic stimulation on behavioral recovery during early stage of traumatic brain injury in rats. J Korean Med Sci. 2015;30(10):1496–502.PubMedPubMedCentralCrossRef
46.
go back to reference Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res. 2020;15(8):1437–50.PubMedPubMedCentralCrossRef Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res. 2020;15(8):1437–50.PubMedPubMedCentralCrossRef
47.
go back to reference Sun Z, Jiang T, Wu Y, Ma C, He Y, Yang J. Low field magnetic stimulation ameliorates schizophrenia-like behavior and up-regulates neuregulin-1 expression in a mouse model of cuprizone-induced demyelination. Front Psych. 2018;9:675.CrossRef Sun Z, Jiang T, Wu Y, Ma C, He Y, Yang J. Low field magnetic stimulation ameliorates schizophrenia-like behavior and up-regulates neuregulin-1 expression in a mouse model of cuprizone-induced demyelination. Front Psych. 2018;9:675.CrossRef
48.
go back to reference Tsuchiya K. Inflammasome-associated cell death: pyroptosis, apoptosis, and physiological implications. Microbiol Immunol. 2020;64(4):252–69.PubMedCrossRef Tsuchiya K. Inflammasome-associated cell death: pyroptosis, apoptosis, and physiological implications. Microbiol Immunol. 2020;64(4):252–69.PubMedCrossRef
49.
go back to reference Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2018;315(6):H1553-h1568.PubMedPubMedCentralCrossRef Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2018;315(6):H1553-h1568.PubMedPubMedCentralCrossRef
50.
go back to reference Adamczak S, Dale G, de Rivero Vaccari JP, Bullock MR, Dietrich WD, Keane RW. Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome: clinical article. J Neurosurg. 2012;117(6):1119–25.PubMedPubMedCentralCrossRef Adamczak S, Dale G, de Rivero Vaccari JP, Bullock MR, Dietrich WD, Keane RW. Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome: clinical article. J Neurosurg. 2012;117(6):1119–25.PubMedPubMedCentralCrossRef
51.
go back to reference Marchetti C, Toldo S, Chojnacki J, Mezzaroma E, Liu K, Salloum FN, Nordio A, Carbone S, Mauro AG, Das A, et al. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. J Cardiovasc Pharmacol. 2015;66(1):1–8.PubMedPubMedCentralCrossRef Marchetti C, Toldo S, Chojnacki J, Mezzaroma E, Liu K, Salloum FN, Nordio A, Carbone S, Mauro AG, Das A, et al. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. J Cardiovasc Pharmacol. 2015;66(1):1–8.PubMedPubMedCentralCrossRef
52.
go back to reference van Hout GP, Bosch L, Ellenbroek GH, de Haan JJ, van Solinge WW, Cooper MA, Arslan F, de Jager SC, Robertson AA, Pasterkamp G, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J. 2017;38(11):828–36.PubMed van Hout GP, Bosch L, Ellenbroek GH, de Haan JJ, van Solinge WW, Cooper MA, Arslan F, de Jager SC, Robertson AA, Pasterkamp G, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J. 2017;38(11):828–36.PubMed
53.
go back to reference Schilling M, Besselmann M, Müller M, Strecker JK, Ringelstein EB, Kiefer R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol. 2005;196(2):290–7.PubMedCrossRef Schilling M, Besselmann M, Müller M, Strecker JK, Ringelstein EB, Kiefer R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol. 2005;196(2):290–7.PubMedCrossRef
54.
go back to reference Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173(4):649–65.PubMedCrossRef Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173(4):649–65.PubMedCrossRef
55.
go back to reference Pikhovych A, Stolberg NP, Jessica Flitsch L, Walter HL, Graf R, Fink GR, Schroeter M, Rueger MA. Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int. 2016;2016:2715196.PubMedPubMedCentralCrossRef Pikhovych A, Stolberg NP, Jessica Flitsch L, Walter HL, Graf R, Fink GR, Schroeter M, Rueger MA. Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int. 2016;2016:2715196.PubMedPubMedCentralCrossRef
56.
go back to reference Peruzzotti-Jametti L, Cambiaghi M, Bacigaluppi M, Gallizioli M, Gaude E, Mari S, Sandrone S, Cursi M, Teneud L, Comi G, et al. Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke. Stroke. 2013;44(11):3166–74.PubMedCrossRef Peruzzotti-Jametti L, Cambiaghi M, Bacigaluppi M, Gallizioli M, Gaude E, Mari S, Sandrone S, Cursi M, Teneud L, Comi G, et al. Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke. Stroke. 2013;44(11):3166–74.PubMedCrossRef
57.
go back to reference Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, Ladwig A, Luelling J, Neumaier B, Endepols H, et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol. 2016;279:127–36.PubMedCrossRef Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, Ladwig A, Luelling J, Neumaier B, Endepols H, et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol. 2016;279:127–36.PubMedCrossRef
58.
go back to reference Zorzo C, Higarza SG, Méndez M, Martínez JA, Pernía AM, Arias JL. High frequency repetitive transcranial magnetic stimulation improves neuronal activity without affecting astrocytes and microglia density. Brain Res Bull. 2019;150:13–20.PubMedCrossRef Zorzo C, Higarza SG, Méndez M, Martínez JA, Pernía AM, Arias JL. High frequency repetitive transcranial magnetic stimulation improves neuronal activity without affecting astrocytes and microglia density. Brain Res Bull. 2019;150:13–20.PubMedCrossRef
59.
go back to reference Zong X, Dong Y, Li Y, Yang L, Li Y, Yang B, Tucker L, Zhao N, Brann DW, Yan X, et al. Beneficial effects of theta-burst transcranial magnetic stimulation on stroke injury via improving neuronal microenvironment and mitochondrial integrity. Transl Stroke Res. 2020;11(3):450–67.PubMedCrossRef Zong X, Dong Y, Li Y, Yang L, Li Y, Yang B, Tucker L, Zhao N, Brann DW, Yan X, et al. Beneficial effects of theta-burst transcranial magnetic stimulation on stroke injury via improving neuronal microenvironment and mitochondrial integrity. Transl Stroke Res. 2020;11(3):450–67.PubMedCrossRef
60.
go back to reference Muri L, Oberhänsli S, Buri M, Le ND, Grandgirard D, Bruggmann R, Müri RM, Leib SL. Repetitive transcranial magnetic stimulation activates glial cells and inhibits neurogenesis after pneumococcal meningitis. PLoS ONE. 2020;15(9): e0232863.PubMedPubMedCentralCrossRef Muri L, Oberhänsli S, Buri M, Le ND, Grandgirard D, Bruggmann R, Müri RM, Leib SL. Repetitive transcranial magnetic stimulation activates glial cells and inhibits neurogenesis after pneumococcal meningitis. PLoS ONE. 2020;15(9): e0232863.PubMedPubMedCentralCrossRef
61.
go back to reference Silveira LS, Antunes Bde M, Minari AL, Dos Santos RV, Neto JC, Lira FS. Macrophage polarization: implications on metabolic diseases and the role of exercise. Crit Rev Eukaryot Gene Expr. 2016;26(2):115–32.PubMedCrossRef Silveira LS, Antunes Bde M, Minari AL, Dos Santos RV, Neto JC, Lira FS. Macrophage polarization: implications on metabolic diseases and the role of exercise. Crit Rev Eukaryot Gene Expr. 2016;26(2):115–32.PubMedCrossRef
62.
go back to reference Wang PL, Yim AKY, Kim KW, Avey D, Czepielewski RS, Colonna M, Milbrandt J, Randolph GJ. Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. Nat Commun. 2020;11(1):2552.PubMedPubMedCentralCrossRef Wang PL, Yim AKY, Kim KW, Avey D, Czepielewski RS, Colonna M, Milbrandt J, Randolph GJ. Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. Nat Commun. 2020;11(1):2552.PubMedPubMedCentralCrossRef
63.
go back to reference Jin WN, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, Liu Q. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metabol. 2017;37(6):2224–36.CrossRef Jin WN, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, Liu Q. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metabol. 2017;37(6):2224–36.CrossRef
Metadata
Title
Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice
Authors
Lu Luo
Meixi Liu
Yunhui Fan
Jingjun Zhang
Li Liu
Yun Li
Qiqi Zhang
Hongyu Xie
Congyu Jiang
Junfa Wu
Xiao Xiao
Yi Wu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2022
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-022-02501-2

Other articles of this Issue 1/2022

Journal of Neuroinflammation 1/2022 Go to the issue