Skip to main content
Top
Published in: Insights into Imaging 1/2023

Open Access 01-12-2023 | Stroke | Original Article

Core and penumbra estimation using deep learning-based AIF in association with clinical measures in computed tomography perfusion (CTP)

Authors: Sukhdeep Singh Bal, Fan-pei Gloria Yang, Nai-Fang Chi, Jiu Haw Yin, Tao-Jung Wang, Giia Sheun Peng, Ke Chen, Ching-Chi Hsu, Chang-I Chen

Published in: Insights into Imaging | Issue 1/2023

Login to get access

Abstract

Objectives

To investigate whether utilizing a convolutional neural network (CNN)-based arterial input function (AIF) improves the volumetric estimation of core and penumbra in association with clinical measures in stroke patients.

Methods

The study included 160 acute ischemic stroke patients (male = 87, female = 73, median age = 73 years) with approval from the institutional review board. The patients had undergone CTP imaging, NIHSS and ASPECTS grading. convolutional neural network (CNN) model was trained to fit a raw AIF curve to a gamma variate function. CNN AIF was utilized to estimate the core and penumbra volumes which were further validated with clinical scores.

Results

Penumbra estimated by CNN AIF correlated positively with the NIHSS score (r = 0.69; p < 0.001) and negatively with the ASPECTS (r =  − 0.43; p < 0.001). The CNN AIF estimated penumbra and core volume matching the patient symptoms, typically in patients with higher NIHSS (> 20) and lower ASPECT score (< 5). In group analysis, the median CBF < 20%, CBF < 30%, rCBF < 38%, Tmax > 10 s, Tmax > 10 s volumes were statistically significantly higher (p < .05).

Conclusions

With inclusion of the CNN AIF in perfusion imaging pipeline, penumbra and core estimations are more reliable as they correlate with scores representing neurological deficits in stroke.

Critical relevance statement

With CNN AIF perfusion imaging pipeline, penumbra and core estimations are more reliable as they correlate with scores representing neurological deficits in stroke.

Graphic abstract

Literature
1.
go back to reference Campbell BCV, Christensen S, Levi CR et al (2012) Comparison of computed tomography perfusion and magnetic resonance imaging perfusion-diffusion mismatch in ischemic stroke. Stroke 43:2648–2653CrossRefPubMed Campbell BCV, Christensen S, Levi CR et al (2012) Comparison of computed tomography perfusion and magnetic resonance imaging perfusion-diffusion mismatch in ischemic stroke. Stroke 43:2648–2653CrossRefPubMed
2.
go back to reference Winder A, d’Esterre CD, Menon BK, Fiehler J, Forkert ND (2020) Automatic arterial input function selection in CT and MR perfusion datasets using deep convolutional neural networks. Med Phys 47:4199–4211CrossRefPubMed Winder A, d’Esterre CD, Menon BK, Fiehler J, Forkert ND (2020) Automatic arterial input function selection in CT and MR perfusion datasets using deep convolutional neural networks. Med Phys 47:4199–4211CrossRefPubMed
3.
go back to reference Suh CH, Jung SC, Cho SJ et al (2019) Perfusion CT for prediction of hemorrhagic transformation in acute ischemic stroke: a systematic review and meta-analysis. Eur Radiol 29:4077–4087CrossRefPubMed Suh CH, Jung SC, Cho SJ et al (2019) Perfusion CT for prediction of hemorrhagic transformation in acute ischemic stroke: a systematic review and meta-analysis. Eur Radiol 29:4077–4087CrossRefPubMed
4.
go back to reference Warach S (2001) New imaging strategies for patient selection for thrombolytic and neuroprotective therapies. Neurology 57:S48–52CrossRefPubMed Warach S (2001) New imaging strategies for patient selection for thrombolytic and neuroprotective therapies. Neurology 57:S48–52CrossRefPubMed
5.
go back to reference Donnan GA, Davis SM (2008) Breaking the 3 h barrier for treatment of acute ischaemic stroke. Lancet Neurol 7:981–982CrossRefPubMed Donnan GA, Davis SM (2008) Breaking the 3 h barrier for treatment of acute ischaemic stroke. Lancet Neurol 7:981–982CrossRefPubMed
6.
go back to reference Othman AE, Brockmann C, Yang Z et al (2015) Effects of radiation dose reduction in volume perfusion CT imaging of acute ischemic stroke. Eur Radiol 25:3415–3422CrossRefPubMed Othman AE, Brockmann C, Yang Z et al (2015) Effects of radiation dose reduction in volume perfusion CT imaging of acute ischemic stroke. Eur Radiol 25:3415–3422CrossRefPubMed
8.
go back to reference Abels B, Villablanca JP, Tomandl BF, Uder M, Lell MM (2012) Acute stroke: a comparison of different CT perfusion algorithms and validation of ischaemic lesions by follow-up imaging. Eur Radiol 22:2559–2567CrossRefPubMed Abels B, Villablanca JP, Tomandl BF, Uder M, Lell MM (2012) Acute stroke: a comparison of different CT perfusion algorithms and validation of ischaemic lesions by follow-up imaging. Eur Radiol 22:2559–2567CrossRefPubMed
9.
go back to reference Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473CrossRefPubMed Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473CrossRefPubMed
10.
go back to reference Yang F, Bal SSB, Sung YF, Peng GS (2020) Mathematical framework of deconvolution algorithms for quantification of perfusion parameters. Acta Neurol Taiwan 29(3):79–85 Yang F, Bal SSB, Sung YF, Peng GS (2020) Mathematical framework of deconvolution algorithms for quantification of perfusion parameters. Acta Neurol Taiwan 29(3):79–85
11.
go back to reference Calamante F (2013) Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 74:1–32CrossRefPubMed Calamante F (2013) Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 74:1–32CrossRefPubMed
12.
go back to reference Bal SS, Yang FPG, Sung Y-F, Chen K, Yin J-H, Peng G-S (2022) Optimal scaling approaches for perfusion mri with distorted arterial input function (AIF) in patients with ischemic stroke. Brain Sci 12:77CrossRefPubMedPubMedCentral Bal SS, Yang FPG, Sung Y-F, Chen K, Yin J-H, Peng G-S (2022) Optimal scaling approaches for perfusion mri with distorted arterial input function (AIF) in patients with ischemic stroke. Brain Sci 12:77CrossRefPubMedPubMedCentral
13.
go back to reference Forkert ND, Kaesemann P, Treszl A et al (2013) Comparison of 10 TTP and Tmax estimation techniques for MR perfusion-diffusion mismatch quantification in acute stroke. AJNR Am J Neuroradiol 34:1697–1703CrossRefPubMedPubMedCentral Forkert ND, Kaesemann P, Treszl A et al (2013) Comparison of 10 TTP and Tmax estimation techniques for MR perfusion-diffusion mismatch quantification in acute stroke. AJNR Am J Neuroradiol 34:1697–1703CrossRefPubMedPubMedCentral
14.
go back to reference Forkert ND, Fiehler J, Ries T et al (2011) Reference-based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusion-weighted image sequences. Magn Reson Med 65:289–294CrossRefPubMed Forkert ND, Fiehler J, Ries T et al (2011) Reference-based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusion-weighted image sequences. Magn Reson Med 65:289–294CrossRefPubMed
16.
go back to reference Kuang H, Qiu W, Boers AM et al (2021) Computed tomography perfusion–based machine learning model better predicts follow-up infarction in patients with acute ischemic stroke. Stroke 52:223–231CrossRefPubMed Kuang H, Qiu W, Boers AM et al (2021) Computed tomography perfusion–based machine learning model better predicts follow-up infarction in patients with acute ischemic stroke. Stroke 52:223–231CrossRefPubMed
17.
18.
go back to reference Tuladhar A, Schimert S, Rajashekar D, Kniep H, Fiehler J, Forkert ND (2020) Automatic segmentation of stroke lesions in non-contrast computed tomography datasets with convolutional neural networks. IEEE Access 8:94871CrossRef Tuladhar A, Schimert S, Rajashekar D, Kniep H, Fiehler J, Forkert ND (2020) Automatic segmentation of stroke lesions in non-contrast computed tomography datasets with convolutional neural networks. IEEE Access 8:94871CrossRef
19.
go back to reference Tei H, Uchiyama S, Usui T (2007) Clinical-diffusion mismatch defined by NIHSS and ASPECTS in non-lacunar anterior circulation infarction. J Neurol 254:340–346CrossRefPubMed Tei H, Uchiyama S, Usui T (2007) Clinical-diffusion mismatch defined by NIHSS and ASPECTS in non-lacunar anterior circulation infarction. J Neurol 254:340–346CrossRefPubMed
20.
go back to reference Cheng Z, Geng X, Rajah GB et al (2021) NIHSS consciousness score combined with ASPECTS is a favorable predictor of functional outcome post endovascular recanalization in stroke patients. Aging Dis 12:415–424CrossRefPubMedPubMedCentral Cheng Z, Geng X, Rajah GB et al (2021) NIHSS consciousness score combined with ASPECTS is a favorable predictor of functional outcome post endovascular recanalization in stroke patients. Aging Dis 12:415–424CrossRefPubMedPubMedCentral
21.
go back to reference Wu HM, Lee IH, Luo CB, Chung CP, Lin YY (2021) Clinical-CT mismatch defined NIHSS ≥ 8 and CT-ASPECTS ≥ 9 as a reliable marker of candidacy for intravenous thrombolytic therapy in acute ischemic stroke. PLoS One 16:e0251077 Wu HM, Lee IH, Luo CB, Chung CP, Lin YY (2021) Clinical-CT mismatch defined NIHSS ≥ 8 and CT-ASPECTS ≥ 9 as a reliable marker of candidacy for intravenous thrombolytic therapy in acute ischemic stroke. PLoS One 16:e0251077
22.
go back to reference Tsogkas I, Knauth M, Schregel K et al (2016) Added value of CT perfusion compared to CT angiography in predicting clinical outcomes of stroke patients treated with mechanical thrombectomy. Eur Radiol 26:4213–4219CrossRefPubMed Tsogkas I, Knauth M, Schregel K et al (2016) Added value of CT perfusion compared to CT angiography in predicting clinical outcomes of stroke patients treated with mechanical thrombectomy. Eur Radiol 26:4213–4219CrossRefPubMed
23.
24.
go back to reference Adams HP, Davis PH, Leira EC et al (1999) Baseline NIH stroke scale score strongly predicts outcome after stroke. Acute Stroke Treat 53:126–126 Adams HP, Davis PH, Leira EC et al (1999) Baseline NIH stroke scale score strongly predicts outcome after stroke. Acute Stroke Treat 53:126–126
25.
go back to reference Barber PA, Demchuk AM, Zhang J et al (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 355:1670–1674 Barber PA, Demchuk AM, Zhang J et al (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 355:1670–1674
26.
go back to reference Mokin M, Primiani CT, Siddiqui AH, Turk AS (2017) ASPECTS (Alberta Stroke Program Early CT Score) measurement using hounsfield unit values when selecting patients for stroke thrombectomy. Stroke 48:1574–1579CrossRefPubMed Mokin M, Primiani CT, Siddiqui AH, Turk AS (2017) ASPECTS (Alberta Stroke Program Early CT Score) measurement using hounsfield unit values when selecting patients for stroke thrombectomy. Stroke 48:1574–1579CrossRefPubMed
27.
go back to reference Kaesmacher J, Chaloulos-Iakovidis P, Panos L et al (2019) Mechanical thrombectomy in ischemic stroke patients with alberta stroke program early computed tomography score 0–5. Stroke 50:880–888CrossRefPubMedPubMedCentral Kaesmacher J, Chaloulos-Iakovidis P, Panos L et al (2019) Mechanical thrombectomy in ischemic stroke patients with alberta stroke program early computed tomography score 0–5. Stroke 50:880–888CrossRefPubMedPubMedCentral
28.
go back to reference Powers WJ, Derdeyn CP, Biller J et al (2015) 2015 American Heart Association/American Stroke Association Focused Update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. Stroke 46:3020–3035CrossRefPubMed Powers WJ, Derdeyn CP, Biller J et al (2015) 2015 American Heart Association/American Stroke Association Focused Update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. Stroke 46:3020–3035CrossRefPubMed
29.
go back to reference Peruzzo D, Bertoldo A, Zanderigo F, Cobelli C (2011) Automatic selection of arterial input function on dynamic contrast-enhanced MR images. Comput Methods Progr Biomed 104:e148–157CrossRef Peruzzo D, Bertoldo A, Zanderigo F, Cobelli C (2011) Automatic selection of arterial input function on dynamic contrast-enhanced MR images. Comput Methods Progr Biomed 104:e148–157CrossRef
30.
go back to reference Bal SS, Chen K, Yang F-PG, Peng G-S (2022) Arterial input function segmentation based on a contour geodesic model for tissue at risk identification in ischemic stroke. Med Phys 49:2475–2485CrossRefPubMed Bal SS, Chen K, Yang F-PG, Peng G-S (2022) Arterial input function segmentation based on a contour geodesic model for tissue at risk identification in ischemic stroke. Med Phys 49:2475–2485CrossRefPubMed
31.
go back to reference Tong DC, Yenari MA, Albers GW, O’Brien M, Marks MP, Moseley ME (1998) Correlation of perfusion- and diffusion-weighted MRI with NIHSS score in acute (<6.5 hour) ischemic stroke. Neurology 50:864–869CrossRefPubMed Tong DC, Yenari MA, Albers GW, O’Brien M, Marks MP, Moseley ME (1998) Correlation of perfusion- and diffusion-weighted MRI with NIHSS score in acute (<6.5 hour) ischemic stroke. Neurology 50:864–869CrossRefPubMed
32.
34.
go back to reference Lee MJ, Son JP, Kim SJ et al (2015) Predicting collateral status with magnetic resonance perfusion parameters. Stroke 46:2800–2807CrossRefPubMed Lee MJ, Son JP, Kim SJ et al (2015) Predicting collateral status with magnetic resonance perfusion parameters. Stroke 46:2800–2807CrossRefPubMed
35.
go back to reference Knutsson L, Lindgren E, Ahlgren A et al (2015) Reduction of arterial partial volume effects for improved absolute quantification of DSC-MRI perfusion estimates: comparison between tail scaling and prebolus administration. J Magn Reson Imaging 41:903–908CrossRefPubMed Knutsson L, Lindgren E, Ahlgren A et al (2015) Reduction of arterial partial volume effects for improved absolute quantification of DSC-MRI perfusion estimates: comparison between tail scaling and prebolus administration. J Magn Reson Imaging 41:903–908CrossRefPubMed
36.
go back to reference Jing J, Liu Z, Guan H et al (2023) A deep learning system to predict recurrence and disability outcomes in patients with transient ischemic attack or ischemic stroke. Adv Intell Syst 5:2200240CrossRef Jing J, Liu Z, Guan H et al (2023) A deep learning system to predict recurrence and disability outcomes in patients with transient ischemic attack or ischemic stroke. Adv Intell Syst 5:2200240CrossRef
37.
go back to reference Kolmos M, Christoffersen L, Kruuse C (2021) Recurrent ischemic stroke – a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 30:105935CrossRefPubMed Kolmos M, Christoffersen L, Kruuse C (2021) Recurrent ischemic stroke – a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 30:105935CrossRefPubMed
Metadata
Title
Core and penumbra estimation using deep learning-based AIF in association with clinical measures in computed tomography perfusion (CTP)
Authors
Sukhdeep Singh Bal
Fan-pei Gloria Yang
Nai-Fang Chi
Jiu Haw Yin
Tao-Jung Wang
Giia Sheun Peng
Ke Chen
Ching-Chi Hsu
Chang-I Chen
Publication date
01-12-2023
Publisher
Springer Vienna
Keyword
Stroke
Published in
Insights into Imaging / Issue 1/2023
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-023-01472-z

Other articles of this Issue 1/2023

Insights into Imaging 1/2023 Go to the issue