Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Research

Stressor control and regional inflammatory responses in the brain: regulation by the basolateral amygdala

Authors: Austin M. Adkins, Emily M. Colby, Woong-Ki Kim, Laurie L. Wellman, Larry D. Sanford

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Increasing evidence has connected the development of certain neuropsychiatric disorders, as well as neurodegenerative diseases, to stress-induced dysregulation of the immune system. We have shown that escapable (ES) and inescapable (IS) footshock stress, and memories associated with ES or IS, can differentially alter inflammatory-related gene expression in brain in a region dependent manner. We have also demonstrated that the basolateral amygdala (BLA) regulates stress- and fear memory-induced alterations in sleep, and that differential sleep and immune responses in the brain to ES and IS appear to be integrated during fear conditioning and then reproduced by fear memory recall. In this study, we investigated the role of BLA in influencing regional inflammatory responses within the hippocampus (HPC) and medial prefrontal cortex (mPFC) by optogenetically stimulating or inhibiting BLA in male C57BL/6 mice during footshock stress in our yoked shuttlebox paradigm based on ES and IS. Then, mice were immediately euthanized and RNA extracted from brain regions of interest and loaded into NanoString® Mouse Neuroinflammation Panels for compilation of gene expression profiles. Results showed differential regional effects in gene expression and activated pathways involved in inflammatory-related signaling following ES and IS, and these differences were altered depending on amygdalar excitation or inhibition. These findings demonstrate that the stress-induced immune response, or “parainflammation”, is affected by stressor controllability and that BLA influences regional parainflammation to ES or IS in HPC and mPFC. The study illustrates how stress-induced parainflammation can be regulated at the neurocircuit level and suggests that this approach can be useful for uncovering circuit and immune interactions in mediating differential stress outcomes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kiecolt-Glaser JK, McGuire L, Robles TF, Glaser R. Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology. Annu Rev Psychol. 2002;53:83–107.PubMedCrossRef Kiecolt-Glaser JK, McGuire L, Robles TF, Glaser R. Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology. Annu Rev Psychol. 2002;53:83–107.PubMedCrossRef
2.
go back to reference Nakata A. Psychosocial job stress and immunity: a systematic review. Methods Mol Biol. 2012;934:39–75.PubMedCrossRef Nakata A. Psychosocial job stress and immunity: a systematic review. Methods Mol Biol. 2012;934:39–75.PubMedCrossRef
3.
go back to reference Angelidou A, Asadi S, Alysandratos KD, Karagkouni A, Kourembanas S, Theoharides TC. Perinatal stress, brain inflammation and risk of autism—review and proposal. BMC Pediatr. 2012;12:89.PubMedPubMedCentralCrossRef Angelidou A, Asadi S, Alysandratos KD, Karagkouni A, Kourembanas S, Theoharides TC. Perinatal stress, brain inflammation and risk of autism—review and proposal. BMC Pediatr. 2012;12:89.PubMedPubMedCentralCrossRef
4.
go back to reference Gárate I, Garcia-Bueno B, Muñoz Madrigal JL, Rubén Caso J, Antonio Micóde J, Alou L, et al. Stress-induced neuroinflammation: role of the toll-like receptor-4 pathway. Biol Psychiatry. 2013;73(1):32–43.PubMedCrossRef Gárate I, Garcia-Bueno B, Muñoz Madrigal JL, Rubén Caso J, Antonio Micóde J, Alou L, et al. Stress-induced neuroinflammation: role of the toll-like receptor-4 pathway. Biol Psychiatry. 2013;73(1):32–43.PubMedCrossRef
5.
go back to reference Barnum CJ, Pace TW, Hu F, Neigh GN, Tansey MG. Psychological stress in adolescent and adult mice increases neuroinflammation and attenuates the response to LPS challenge. J Neuroinflammation. 2012;9(9). Barnum CJ, Pace TW, Hu F, Neigh GN, Tansey MG. Psychological stress in adolescent and adult mice increases neuroinflammation and attenuates the response to LPS challenge. J Neuroinflammation. 2012;9(9).
6.
go back to reference Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(Pt 5):1175–89.PubMedPubMedCentralCrossRef Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(Pt 5):1175–89.PubMedPubMedCentralCrossRef
7.
go back to reference Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol. 2012;71(4):444–57.PubMedCrossRef Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol. 2012;71(4):444–57.PubMedCrossRef
8.
go back to reference Karagkouni A, Alevizos M, Theoharides TC. Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev. 2013;12(10):947–53.PubMedCrossRef Karagkouni A, Alevizos M, Theoharides TC. Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev. 2013;12(10):947–53.PubMedCrossRef
9.
go back to reference Wohleb ES, Godbout JP. Basic aspects of the immunology of neuroinflammation. Mod Trends Pharmacopsychiatry. 2013;28:1–19.PubMedCrossRef Wohleb ES, Godbout JP. Basic aspects of the immunology of neuroinflammation. Mod Trends Pharmacopsychiatry. 2013;28:1–19.PubMedCrossRef
11.
12.
go back to reference Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science. 2016;353(6299):603–8.PubMedPubMedCentralCrossRef Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science. 2016;353(6299):603–8.PubMedPubMedCentralCrossRef
13.
go back to reference Chitnis T, Imitola J, Wang Y, Elyaman W, Chawla P, Sharuk M, et al. Elevated neuronal expression of CD200 protects wlds mice from inflammation-mediated neurodegeneration. Am J Pathol. 2007;170(5):1695–712.PubMedPubMedCentralCrossRef Chitnis T, Imitola J, Wang Y, Elyaman W, Chawla P, Sharuk M, et al. Elevated neuronal expression of CD200 protects wlds mice from inflammation-mediated neurodegeneration. Am J Pathol. 2007;170(5):1695–712.PubMedPubMedCentralCrossRef
14.
go back to reference Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR, et al. Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry. 2005;58(3):175–89.PubMedCrossRef Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR, et al. Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry. 2005;58(3):175–89.PubMedCrossRef
15.
go back to reference Theoharides TC, Conti P, Economu M. Brain inflammation, neuropsychiatric disorders, and immunoendocrine effects of luteolin. J Clin Psychopharmacol. 2014;34(2):187–9.PubMedCrossRef Theoharides TC, Conti P, Economu M. Brain inflammation, neuropsychiatric disorders, and immunoendocrine effects of luteolin. J Clin Psychopharmacol. 2014;34(2):187–9.PubMedCrossRef
16.
go back to reference Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci. 2015;8:447.PubMedPubMedCentralCrossRef Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci. 2015;8:447.PubMedPubMedCentralCrossRef
19.
go back to reference Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D, et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. PNAS. 2014;111(45):16136–41.PubMedPubMedCentralCrossRef Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D, et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. PNAS. 2014;111(45):16136–41.PubMedPubMedCentralCrossRef
20.
go back to reference Amat J, Matus-Amat P, Watkins LR, Maier SF. Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Res. 1998;812:113–20.PubMedCrossRef Amat J, Matus-Amat P, Watkins LR, Maier SF. Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Res. 1998;812:113–20.PubMedCrossRef
21.
go back to reference Akirav I, Maroun M. The role of the medial prefrontal cortex–amygdala circuit in stress effects on the extinction of fear. Neural Plast. 2007;2007:1–11.CrossRef Akirav I, Maroun M. The role of the medial prefrontal cortex–amygdala circuit in stress effects on the extinction of fear. Neural Plast. 2007;2007:1–11.CrossRef
22.
go back to reference Liu X, Tang X, Sanford LD. Fear-conditioned suppression of REM sleep: relationship to Fos expression patterns in limbic and brainstem regions in BALB/cJ mice. Brain Res. 2003;991(1–2):1–17.PubMedCrossRef Liu X, Tang X, Sanford LD. Fear-conditioned suppression of REM sleep: relationship to Fos expression patterns in limbic and brainstem regions in BALB/cJ mice. Brain Res. 2003;991(1–2):1–17.PubMedCrossRef
23.
go back to reference Sanford LD, Tang X, Ross RJ, Morrison AR. Influence of shock training and explicit fear-conditioned cues on sleep architecture in mice: strain comparison. Behav Genet. 2003;33(1):43–58.PubMedCrossRef Sanford LD, Tang X, Ross RJ, Morrison AR. Influence of shock training and explicit fear-conditioned cues on sleep architecture in mice: strain comparison. Behav Genet. 2003;33(1):43–58.PubMedCrossRef
24.
go back to reference Tang X, Yang L, Sanford LD. Rat strain differences in freezing and sleep alterations associated with contextual fear. Sleep. 2005;28(10):1235–44.PubMedCrossRef Tang X, Yang L, Sanford LD. Rat strain differences in freezing and sleep alterations associated with contextual fear. Sleep. 2005;28(10):1235–44.PubMedCrossRef
25.
go back to reference Sanford LD, Yang L, Wellman LL, Liu X, Tang X. Differential effects of controllable and uncontrollable footshock stress on sleep in mice. Sleep. 2010;33(5):621–30.PubMedPubMedCentralCrossRef Sanford LD, Yang L, Wellman LL, Liu X, Tang X. Differential effects of controllable and uncontrollable footshock stress on sleep in mice. Sleep. 2010;33(5):621–30.PubMedPubMedCentralCrossRef
26.
go back to reference Yang L, Wellman LL, Ambrozewicz M, Sanford LD. Effects of stressor controllability on sleep, temperature, and fear behavior in mice. Sleep. 2011;34(6):759–71.PubMedPubMedCentralCrossRef Yang L, Wellman LL, Ambrozewicz M, Sanford LD. Effects of stressor controllability on sleep, temperature, and fear behavior in mice. Sleep. 2011;34(6):759–71.PubMedPubMedCentralCrossRef
27.
go back to reference Liu X, Yang L, Wellman LL, Tang X, Sanford LD. GABAergic antagonism of the central nucleus of the amygdala attenuates reductions in rapid eye movement sleep after inescapable footshock stress. Sleep. 2009;32(7):888–96.PubMedPubMedCentralCrossRef Liu X, Yang L, Wellman LL, Tang X, Sanford LD. GABAergic antagonism of the central nucleus of the amygdala attenuates reductions in rapid eye movement sleep after inescapable footshock stress. Sleep. 2009;32(7):888–96.PubMedPubMedCentralCrossRef
29.
go back to reference Adkins AM, Wellman LL, Sanford LD. Controllable and uncontrollable stress differentially impact fear conditioned alterations in sleep and neuroimmune signaling in mice. Life. 2022;12:1320.PubMedPubMedCentralCrossRef Adkins AM, Wellman LL, Sanford LD. Controllable and uncontrollable stress differentially impact fear conditioned alterations in sleep and neuroimmune signaling in mice. Life. 2022;12:1320.PubMedPubMedCentralCrossRef
30.
go back to reference Engler H, Doenlen R, Engler A, Riether C, Prager G, Niemi MB, et al. Acute amygdaloid response to systemic inflammation. Brain Behav Immun. 2011;25(7):1384–92.PubMedCrossRef Engler H, Doenlen R, Engler A, Riether C, Prager G, Niemi MB, et al. Acute amygdaloid response to systemic inflammation. Brain Behav Immun. 2011;25(7):1384–92.PubMedCrossRef
31.
go back to reference Prager G, Hadamitzky M, Engler A, Doenlen R, Wirth T, Pacheco-Lopez G, et al. Amygdaloid signature of peripheral immune activation by bacterial lipopolysaccharide or staphylococcal enterotoxin B. J Neuroimmune Pharmacol. 2013;8(1):42–50.PubMedCrossRef Prager G, Hadamitzky M, Engler A, Doenlen R, Wirth T, Pacheco-Lopez G, et al. Amygdaloid signature of peripheral immune activation by bacterial lipopolysaccharide or staphylococcal enterotoxin B. J Neuroimmune Pharmacol. 2013;8(1):42–50.PubMedCrossRef
32.
go back to reference Munshi S, Rosenkranz JA. Effects of peripheral immune challenge on in vivo firing of basolateral amygdala neurons in adult male rats. Neuroscience. 2018;390:174–86.PubMedCrossRef Munshi S, Rosenkranz JA. Effects of peripheral immune challenge on in vivo firing of basolateral amygdala neurons in adult male rats. Neuroscience. 2018;390:174–86.PubMedCrossRef
33.
go back to reference Eisenberger NI, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage. 2009;47(3):881–90.PubMedCrossRef Eisenberger NI, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage. 2009;47(3):881–90.PubMedCrossRef
34.
go back to reference O’Connor MF, Irwin MR, Wellisch DK. When grief heats up: pro-inflammatory cytokines predict regional brain activation. Neuroimage. 2009;47(3):891–6.PubMedCrossRef O’Connor MF, Irwin MR, Wellisch DK. When grief heats up: pro-inflammatory cytokines predict regional brain activation. Neuroimage. 2009;47(3):891–6.PubMedCrossRef
35.
go back to reference Kollack-Walker S, Watson SJ, Akil H. Social stress in hamsters: defeat activates specific neurocircuits within the brain. J Neurosci. 1997;17(22):8842–55.PubMedPubMedCentralCrossRef Kollack-Walker S, Watson SJ, Akil H. Social stress in hamsters: defeat activates specific neurocircuits within the brain. J Neurosci. 1997;17(22):8842–55.PubMedPubMedCentralCrossRef
37.
go back to reference Martinez M, Calvo-Torrent A, Herbert J. Mapping brain response to social stress in rodents with c-fos expression: a review. Stress. 2002;5(1):3–13.PubMedCrossRef Martinez M, Calvo-Torrent A, Herbert J. Mapping brain response to social stress in rodents with c-fos expression: a review. Stress. 2002;5(1):3–13.PubMedCrossRef
38.
go back to reference Maier SF, Amat J, Baratta MV, Paul E, Watkins LR. Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clin Neurosci. 2006;8(4):397–416.PubMedPubMedCentralCrossRef Maier SF, Amat J, Baratta MV, Paul E, Watkins LR. Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clin Neurosci. 2006;8(4):397–416.PubMedPubMedCentralCrossRef
39.
go back to reference Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation. 2021;18:258.PubMedPubMedCentralCrossRef Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation. 2021;18:258.PubMedPubMedCentralCrossRef
40.
go back to reference Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature. 2011;471(7338):358–62.PubMedPubMedCentralCrossRef Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature. 2011;471(7338):358–62.PubMedPubMedCentralCrossRef
41.
go back to reference Johansen JP, Hamanaka H, Monfils MH, Behnia R, Deisseroth K, Blair HT, et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc Natl Acad Sci USA. 2010;107(28):12692–7.PubMedPubMedCentralCrossRef Johansen JP, Hamanaka H, Monfils MH, Behnia R, Deisseroth K, Blair HT, et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc Natl Acad Sci USA. 2010;107(28):12692–7.PubMedPubMedCentralCrossRef
42.
go back to reference Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature. 2011;475(7356):377–80.PubMedPubMedCentralCrossRef Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature. 2011;475(7356):377–80.PubMedPubMedCentralCrossRef
44.
go back to reference Rojo AI, McBean G, Cindric M, Egea J, Lopez MG, Rada P, et al. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal. 2014;21(12):1766–801.PubMedPubMedCentralCrossRef Rojo AI, McBean G, Cindric M, Egea J, Lopez MG, Rada P, et al. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal. 2014;21(12):1766–801.PubMedPubMedCentralCrossRef
46.
go back to reference Nair A, Bonneau RH. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol. 2006;171(1–2):72–85.PubMedCrossRef Nair A, Bonneau RH. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol. 2006;171(1–2):72–85.PubMedCrossRef
47.
go back to reference Sugama S, Fujita M, Hashimoto M, Conti B. Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience. 2007;146:1388–99.PubMedCrossRef Sugama S, Fujita M, Hashimoto M, Conti B. Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience. 2007;146:1388–99.PubMedCrossRef
48.
go back to reference Ciavarra RP, Machida M, Lundberg PS, Gauronskas P, Wellman LL, Steel C, et al. Controllable and uncontrollable stress differentially impact pathogenicity and survival in a mouse model of viral encephalitis. J Neuroimmunol. 2018;319:130–41.PubMedPubMedCentralCrossRef Ciavarra RP, Machida M, Lundberg PS, Gauronskas P, Wellman LL, Steel C, et al. Controllable and uncontrollable stress differentially impact pathogenicity and survival in a mouse model of viral encephalitis. J Neuroimmunol. 2018;319:130–41.PubMedPubMedCentralCrossRef
49.
go back to reference Deshmukh A, Kim BJ, Gonzales X, Caffrey J, Vishwanatha J, Jones HP. A murine model of stress controllability attenuates Th2-dominant airway inflammatory responses. J Neuroimmunol. 2010;225(1–2):13–21.PubMedPubMedCentralCrossRef Deshmukh A, Kim BJ, Gonzales X, Caffrey J, Vishwanatha J, Jones HP. A murine model of stress controllability attenuates Th2-dominant airway inflammatory responses. J Neuroimmunol. 2010;225(1–2):13–21.PubMedPubMedCentralCrossRef
51.
go back to reference Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 2013;14(6):417–28.PubMedPubMedCentralCrossRef Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 2013;14(6):417–28.PubMedPubMedCentralCrossRef
52.
go back to reference Bremner JD, Vermetten E, Schmahl C, Vaccarino V, Vythilingam M, Afzal N, et al. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med. 2005;35(6):791–806.PubMedPubMedCentralCrossRef Bremner JD, Vermetten E, Schmahl C, Vaccarino V, Vythilingam M, Afzal N, et al. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med. 2005;35(6):791–806.PubMedPubMedCentralCrossRef
53.
go back to reference Shin LM, Rauch SL, Pitman RK. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci. 2006;1071:67.PubMedCrossRef Shin LM, Rauch SL, Pitman RK. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci. 2006;1071:67.PubMedCrossRef
54.
go back to reference Roozendaal B, Koolhaus JM, Bohus B. Central amygdala lesions affect behavioral and autonomic balance during stress in rats. Phys Behav. 1991;50:777–81.CrossRef Roozendaal B, Koolhaus JM, Bohus B. Central amygdala lesions affect behavioral and autonomic balance during stress in rats. Phys Behav. 1991;50:777–81.CrossRef
55.
go back to reference Bohus B, Koolhaas JM, Luiten PGM, Korte SM, Roozendaal B, Wiersma A. The neurobiology of the central nucleus of the amygdala in relation to neuroendocrine outflow. Prog Brain Res. 1996;107:447–60.PubMedCrossRef Bohus B, Koolhaas JM, Luiten PGM, Korte SM, Roozendaal B, Wiersma A. The neurobiology of the central nucleus of the amygdala in relation to neuroendocrine outflow. Prog Brain Res. 1996;107:447–60.PubMedCrossRef
56.
go back to reference Roozendaal B, Koolhaus JM, Bohus B. Attenuated cardiovascular, neuroendocrine, and behavioral responses after a single footshock in central amygdaloid lesioned male rats. Phys Behav. 1991;50:771–5.CrossRef Roozendaal B, Koolhaus JM, Bohus B. Attenuated cardiovascular, neuroendocrine, and behavioral responses after a single footshock in central amygdaloid lesioned male rats. Phys Behav. 1991;50:771–5.CrossRef
57.
go back to reference Wellman LL, Fitzpatrick ME, Hallum OY, Sutton AM, Williams BL, Sanford LD. Individual differences in animal stress models: considering resilience, vulnerability, and the amygdala in mediating the effects of stress and conditioned fear on sleep. Sleep. 2016;39(6):1293–303.PubMedPubMedCentralCrossRef Wellman LL, Fitzpatrick ME, Hallum OY, Sutton AM, Williams BL, Sanford LD. Individual differences in animal stress models: considering resilience, vulnerability, and the amygdala in mediating the effects of stress and conditioned fear on sleep. Sleep. 2016;39(6):1293–303.PubMedPubMedCentralCrossRef
58.
go back to reference Wellman LL, Fitzpatrick ME, Hallum OY, Sutton AM, Williams BL, Sanford LD. The basolateral amygdala can mediate the effects of fear memory on sleep independently of fear behavior and the peripheral stress response. Neurobiol Learn Mem. 2017;137:27–35.PubMedCrossRef Wellman LL, Fitzpatrick ME, Hallum OY, Sutton AM, Williams BL, Sanford LD. The basolateral amygdala can mediate the effects of fear memory on sleep independently of fear behavior and the peripheral stress response. Neurobiol Learn Mem. 2017;137:27–35.PubMedCrossRef
59.
go back to reference McEwen B, Nasca C, Gray J. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41(1):3–23.PubMedCrossRef McEwen B, Nasca C, Gray J. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41(1):3–23.PubMedCrossRef
60.
go back to reference Rudy JW, Matus-Amat P. The ventral hippocampus supports a memory representation of context or contextual fear conditioning: implications for a unitary function of the hippocampus. Behav Neurosci. 2005;119(1):154–63.PubMedCrossRef Rudy JW, Matus-Amat P. The ventral hippocampus supports a memory representation of context or contextual fear conditioning: implications for a unitary function of the hippocampus. Behav Neurosci. 2005;119(1):154–63.PubMedCrossRef
61.
62.
go back to reference Besnard A, Sahay A. Adult hippocampal neurogenesis, fear generalization, and stress. Neuropsychopharmacology. 2016;41:24–44.PubMedCrossRef Besnard A, Sahay A. Adult hippocampal neurogenesis, fear generalization, and stress. Neuropsychopharmacology. 2016;41:24–44.PubMedCrossRef
63.
go back to reference Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. Endocr Rev. 1991;12(2):118–34.PubMedCrossRef Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. Endocr Rev. 1991;12(2):118–34.PubMedCrossRef
64.
go back to reference Jankord R, Herman JP. Limbic regulation of hypothalamo–pituitary–adrenocortical function during acute and chronic stress. Ann NY Acad Sci. 2008;1148:64–73.PubMedCrossRef Jankord R, Herman JP. Limbic regulation of hypothalamo–pituitary–adrenocortical function during acute and chronic stress. Ann NY Acad Sci. 2008;1148:64–73.PubMedCrossRef
65.
go back to reference Machida M, Wellman LL, Fitzpatrick ME, Hallum O, Sutton AM, Lonart G, et al. Effects of optogenetic inhibition of BLA on sleep brief optogenetic inhibition of the basolateral amygdala in mice alters effects of stressful experiences on rapid eye movement sleep. Sleep. 2017;40(4). Machida M, Wellman LL, Fitzpatrick ME, Hallum O, Sutton AM, Lonart G, et al. Effects of optogenetic inhibition of BLA on sleep brief optogenetic inhibition of the basolateral amygdala in mice alters effects of stressful experiences on rapid eye movement sleep. Sleep. 2017;40(4).
66.
go back to reference Jodo E, Chiang C, Aston-Jones G. Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience. 1998;83(1):63–79.PubMedCrossRef Jodo E, Chiang C, Aston-Jones G. Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience. 1998;83(1):63–79.PubMedCrossRef
67.
go back to reference Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci. 2001;21(24):9917–29.PubMedPubMedCentralCrossRef Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci. 2001;21(24):9917–29.PubMedPubMedCentralCrossRef
68.
go back to reference Feldman S, Conforti N, Itzik A, Weidenfeld J. Differential effect of amygdaloid lesions on CRF-41, ACTH and corticosterone responses following neural stimuli. Brain Res. 1994;658(1–2):21–6.PubMedCrossRef Feldman S, Conforti N, Itzik A, Weidenfeld J. Differential effect of amygdaloid lesions on CRF-41, ACTH and corticosterone responses following neural stimuli. Brain Res. 1994;658(1–2):21–6.PubMedCrossRef
69.
go back to reference Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV. Immediate early genes, memory and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Front Behav Neurosci. 2018. Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV. Immediate early genes, memory and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Front Behav Neurosci. 2018.
70.
go back to reference Minatohara K, Akiyoshi M, Okuno H. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci. 2016. Minatohara K, Akiyoshi M, Okuno H. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci. 2016.
71.
go back to reference Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, et al. Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. PNAS. 2008;106(1):316–21.PubMedPubMedCentralCrossRef Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, et al. Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. PNAS. 2008;106(1):316–21.PubMedPubMedCentralCrossRef
72.
go back to reference Shors T, Servatius R. The contribution of stressor intensity, duration, and context to the stress-induced facilitation of associative learning. Neurobiol Learn Mem. 1997;68(1):92–6.PubMedCrossRef Shors T, Servatius R. The contribution of stressor intensity, duration, and context to the stress-induced facilitation of associative learning. Neurobiol Learn Mem. 1997;68(1):92–6.PubMedCrossRef
73.
go back to reference Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233(9):1637–50.PubMedPubMedCentralCrossRef Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233(9):1637–50.PubMedPubMedCentralCrossRef
75.
go back to reference Korin B, Rolls A. Application of chemogenetics and optogenetics to dissect brain–immune interactions. Methods Mol Biol. 2018;1781:195–208.PubMedCrossRef Korin B, Rolls A. Application of chemogenetics and optogenetics to dissect brain–immune interactions. Methods Mol Biol. 2018;1781:195–208.PubMedCrossRef
76.
go back to reference Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci. 2015;9:1–17. Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci. 2015;9:1–17.
Metadata
Title
Stressor control and regional inflammatory responses in the brain: regulation by the basolateral amygdala
Authors
Austin M. Adkins
Emily M. Colby
Woong-Ki Kim
Laurie L. Wellman
Larry D. Sanford
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02813-x

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue