Skip to main content
Top
Published in: Lasers in Medical Science 3/2020

01-04-2020 | Streptococci | Original Article

Exposure of Streptococcus mutans and Streptococcus sanguinis to blue light in an oral biofilm model

Authors: Maayan Vaknin, Doron Steinberg, John D. Featherstone, Osnat Feuerstein

Published in: Lasers in Medical Science | Issue 3/2020

Login to get access

Abstract

The potential anti-cariogenic effect of blue light was evaluated using an oral biofilm model. Two species, Streptococcus mutans and Streptococcus sanguinis, were cultivated ex vivo on bovine enamel blocks for 24 h, either separately or mixed together, then exposed to blue light (wavelengths 400–500 nm) using 112 J/cm2. Twenty four or 48 h after exposure to light the biofilm structure and biomass were characterized and quantified using SEM and qPCR, respectively. Bacterial viability was analyzed by CLSM using live/dead bacterial staining. Gene expression was examined by RT-qPCR. After exposure to light, S. mutans biomass in mono-species biofilm was increased mainly by dead bacteria, relative to control. However, the bacterial biomass of S. mutans when grown in mixed biofilm and of S. sanguinis in mono-species biofilm was reduced after light exposure, with no significant change in viability when compared to control. Furthermore, when grown separately, an upregulation of gene expression related to biofilm formation of S. mutans, and downregulation of similar genes of S. sanguinis, were measured 24 h after exposure to blue light. However, in mixed biofilm, a downregulation of those genes in both species was observed, although not significant in S. mutans. In conclusion, blue light seems to effectively alter the bacterial biomass by reducing the viability and virulence characteristics in both bacterial species and may promote the anti-cariogenic balance between them, when grown in a mixed biofilm. Therefore, exposure of oral biofilm to blue light has the potential to serve as a complementary approach in preventive dentistry.
Literature
1.
go back to reference Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A (2017) Dental caries. Nat Rev Dis Primers 3:17030PubMedCrossRef Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A (2017) Dental caries. Nat Rev Dis Primers 3:17030PubMedCrossRef
2.
go back to reference Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15PubMedCrossRef Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15PubMedCrossRef
3.
go back to reference Steinberg D, Moreinos D, Featherstone J, Shemesh M, Feuerstein O (2008) Genetic and physiological effects of noncoherent visible light combined with hydrogen peroxide on Streptococcus mutans in biofilm. Antimicrob Agents Chemother 52(7):2626–2631PubMedPubMedCentralCrossRef Steinberg D, Moreinos D, Featherstone J, Shemesh M, Feuerstein O (2008) Genetic and physiological effects of noncoherent visible light combined with hydrogen peroxide on Streptococcus mutans in biofilm. Antimicrob Agents Chemother 52(7):2626–2631PubMedPubMedCentralCrossRef
6.
go back to reference Ge Y, Caufield PW, Fisch GS, Li Y (2008) Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children. Caries Res 42(6):444–448PubMedPubMedCentralCrossRef Ge Y, Caufield PW, Fisch GS, Li Y (2008) Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children. Caries Res 42(6):444–448PubMedPubMedCentralCrossRef
7.
go back to reference Valdebenito B, Tullume-Vergara PO, González W, Kreth J, Giacaman RA (2017) In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm. Mol Oral Microbiol 33(2):168–180CrossRef Valdebenito B, Tullume-Vergara PO, González W, Kreth J, Giacaman RA (2017) In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm. Mol Oral Microbiol 33(2):168–180CrossRef
9.
go back to reference Feuerstein O, Persman N, Weiss EI (2004) Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum: An in Vitro Study. Photochem Photobiol 80(3):412–415PubMedCrossRef Feuerstein O, Persman N, Weiss EI (2004) Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum: An in Vitro Study. Photochem Photobiol 80(3):412–415PubMedCrossRef
10.
go back to reference Chebath-Taub D, Steinberg D, Featherstone JD, Feuerstein O (2012) Influence of blue light on Streptococcus mutans re-organization in biofilm. J Photochem Photobiol B 116:75–78PubMedCrossRef Chebath-Taub D, Steinberg D, Featherstone JD, Feuerstein O (2012) Influence of blue light on Streptococcus mutans re-organization in biofilm. J Photochem Photobiol B 116:75–78PubMedCrossRef
11.
go back to reference Sol A, Feuerstein O, Featherstone JD, Steinberg D (2011) Effect of sublethal CO2 laser irradiation on gene expression of Streptococcus mutans immobilized in a biofilm. Caries Res 45(4):361–369PubMedCrossRef Sol A, Feuerstein O, Featherstone JD, Steinberg D (2011) Effect of sublethal CO2 laser irradiation on gene expression of Streptococcus mutans immobilized in a biofilm. Caries Res 45(4):361–369PubMedCrossRef
12.
go back to reference Cohen-Berneron J, Steinberg D, Featherstone JD, Feuerstein O (2016) Sustained effects of blue light on Streptococcus mutans in regrown biofilm. Lasers Med Sci 31(3):445–452PubMedCrossRef Cohen-Berneron J, Steinberg D, Featherstone JD, Feuerstein O (2016) Sustained effects of blue light on Streptococcus mutans in regrown biofilm. Lasers Med Sci 31(3):445–452PubMedCrossRef
13.
go back to reference Feuerstein O, Assad R, Koren E, Ginsburg I, Weiss EI, Houri-Haddad Y (2011) Visible light promotes interleukin-10 secretion by sublethal fluences. Photomed Laser Surg. 29(9):627–633PubMedCrossRef Feuerstein O, Assad R, Koren E, Ginsburg I, Weiss EI, Houri-Haddad Y (2011) Visible light promotes interleukin-10 secretion by sublethal fluences. Photomed Laser Surg. 29(9):627–633PubMedCrossRef
14.
go back to reference McCormack SM, Fried D, Featherstone JD, Glena RE, Seka W (1995) Scanning electron microscope observations of CO2 laser effects on dental enamel. J Dent Res 74(10):1702–1708PubMedCrossRef McCormack SM, Fried D, Featherstone JD, Glena RE, Seka W (1995) Scanning electron microscope observations of CO2 laser effects on dental enamel. J Dent Res 74(10):1702–1708PubMedCrossRef
15.
go back to reference Periasamy S, Kolenbrander PE (2009) Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol 191(22):6804–6811PubMedPubMedCentralCrossRef Periasamy S, Kolenbrander PE (2009) Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol 191(22):6804–6811PubMedPubMedCentralCrossRef
16.
go back to reference Assaf D, Steinberg D, Shemesh M (2015) Lactose triggers biofilm formation by Streptococcus mutans. Int Dairy J 42:51–57CrossRef Assaf D, Steinberg D, Shemesh M (2015) Lactose triggers biofilm formation by Streptococcus mutans. Int Dairy J 42:51–57CrossRef
17.
go back to reference Shemesh M, Tam A, Aharoni R, Steinberg D (2010) Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces. BMC Microbiol 10:51PubMedPubMedCentralCrossRef Shemesh M, Tam A, Aharoni R, Steinberg D (2010) Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces. BMC Microbiol 10:51PubMedPubMedCentralCrossRef
18.
go back to reference Feldman M, Al-Quntar A, Polacheck I, Friedman M, Steinberg D (2014) Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans. PLoS One 9(5):e93225PubMedPubMedCentralCrossRef Feldman M, Al-Quntar A, Polacheck I, Friedman M, Steinberg D (2014) Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans. PLoS One 9(5):e93225PubMedPubMedCentralCrossRef
19.
go back to reference Ramage G, Saville SP, Wickes BL, López-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68(11):5459–5463PubMedPubMedCentralCrossRef Ramage G, Saville SP, Wickes BL, López-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68(11):5459–5463PubMedPubMedCentralCrossRef
20.
go back to reference Shemesh M, Tam A, Steinberg D (2007) Differential gene expression profiling of Streptococcus mutans cultured under biofilm and planktonic conditions. Microbiology 153(Pt 5):1307–1317PubMedCrossRef Shemesh M, Tam A, Steinberg D (2007) Differential gene expression profiling of Streptococcus mutans cultured under biofilm and planktonic conditions. Microbiology 153(Pt 5):1307–1317PubMedCrossRef
21.
go back to reference Shemesh M, Tam A, Feldman M, Steinberg D (2006) Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res 341(12):2090–2097PubMedCrossRef Shemesh M, Tam A, Feldman M, Steinberg D (2006) Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res 341(12):2090–2097PubMedCrossRef
22.
go back to reference Kreth J, Giacaman RA, Raghavan R, Merritt J (2017) The road less traveled – defining molecular commensalism with Streptococcus sanguinis. Mol Oral Microbiol 32(3):181–196PubMedCrossRef Kreth J, Giacaman RA, Raghavan R, Merritt J (2017) The road less traveled – defining molecular commensalism with Streptococcus sanguinis. Mol Oral Microbiol 32(3):181–196PubMedCrossRef
23.
go back to reference Cieplik F, Kara E, Muehler D, Enax J, Hiller KA, Maisch T, Buchalla W (2018) Antimicrobial efficacy of alternative compounds for use in oral care toward biofilms from caries-associated bacteria in vitro. Microbiologyopen e00695 Cieplik F, Kara E, Muehler D, Enax J, Hiller KA, Maisch T, Buchalla W (2018) Antimicrobial efficacy of alternative compounds for use in oral care toward biofilms from caries-associated bacteria in vitro. Microbiologyopen e00695
24.
go back to reference Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A (2014) The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 33(4):499–515PubMedCrossRef Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A (2014) The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 33(4):499–515PubMedCrossRef
25.
go back to reference Rossoni RD, Velloso MDS, de Barros PP, de Alvarenga JA, Santos JDD, Santos Prado ACCD, Ribeiro FC, Anbinder AL, Junqueira JC (2018) Inhibitory effect of probiotic Lactobacillus supernatants from the oral cavity on Streptococcus mutans biofilms. Microb Pathog 123:361–367PubMedCrossRef Rossoni RD, Velloso MDS, de Barros PP, de Alvarenga JA, Santos JDD, Santos Prado ACCD, Ribeiro FC, Anbinder AL, Junqueira JC (2018) Inhibitory effect of probiotic Lactobacillus supernatants from the oral cavity on Streptococcus mutans biofilms. Microb Pathog 123:361–367PubMedCrossRef
26.
go back to reference Souza JGS, Cury JA, Ricomini Filho AP, Feres M, Faveri M, Barão VAR (2018) Effect of sucrose on biofilm formed in situ on titanium material. J Periodontol Souza JGS, Cury JA, Ricomini Filho AP, Feres M, Faveri M, Barão VAR (2018) Effect of sucrose on biofilm formed in situ on titanium material. J Periodontol
27.
go back to reference Feuerstein O (2012) Light therapy: complementary antibacterial treatment of oral biofilm. Adv Dent Res 24(2):103–107PubMedCrossRef Feuerstein O (2012) Light therapy: complementary antibacterial treatment of oral biofilm. Adv Dent Res 24(2):103–107PubMedCrossRef
28.
go back to reference Palma ALDR, Ramos LP, Domingues N, Back-Brito GN, de Oliveira LD, Pereira CA, Jorge AOC (2018) Biofilms of Candida albicans and Streptococcus sanguinis and their susceptibility to antimicrobial effects of photodynamic inactivation. Photodiagnosis Photodyn Ther pii S1572-1000(17):30455–30456 Palma ALDR, Ramos LP, Domingues N, Back-Brito GN, de Oliveira LD, Pereira CA, Jorge AOC (2018) Biofilms of Candida albicans and Streptococcus sanguinis and their susceptibility to antimicrobial effects of photodynamic inactivation. Photodiagnosis Photodyn Ther pii S1572-1000(17):30455–30456
29.
go back to reference Hauser-Gerspach I, Stübinger S, Meyer J (2010) Bactericidal effects of different laser systems on bacteria adhered to dental implant surfaces: an in vitro study comparing zirconia with titanium. Clin Oral Implants Res 21(3):277–283PubMedCrossRef Hauser-Gerspach I, Stübinger S, Meyer J (2010) Bactericidal effects of different laser systems on bacteria adhered to dental implant surfaces: an in vitro study comparing zirconia with titanium. Clin Oral Implants Res 21(3):277–283PubMedCrossRef
31.
go back to reference Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS (2008) Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg 26(4):281–287PubMedCrossRef Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS (2008) Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg 26(4):281–287PubMedCrossRef
32.
go back to reference Hakimiha N, Khoei F, Bahador A, Fekrazad R (2014) The susceptibility of Streptococcus mutans to antibacterial photodynamic therapy: a comparison of two different photosensitizers and light sources. J Appl Oral Sci 22(2):80–84PubMedPubMedCentralCrossRef Hakimiha N, Khoei F, Bahador A, Fekrazad R (2014) The susceptibility of Streptococcus mutans to antibacterial photodynamic therapy: a comparison of two different photosensitizers and light sources. J Appl Oral Sci 22(2):80–84PubMedPubMedCentralCrossRef
33.
go back to reference Pereira CA, Costa AC, Carreira CM, Junqueira JC, Jorge AO (2013) Photodynamic inactivation of Streptococcus mutans and Streptococcus sanguinis biofilms in vitro. Lasers Med Sci 28(3):859–864PubMedCrossRef Pereira CA, Costa AC, Carreira CM, Junqueira JC, Jorge AO (2013) Photodynamic inactivation of Streptococcus mutans and Streptococcus sanguinis biofilms in vitro. Lasers Med Sci 28(3):859–864PubMedCrossRef
34.
go back to reference Soria-Lozano P, Gilaberte Y, Paz-Cristobal MP, Pérez-Artiaga L, Lampaya-Pérez V, Aporta J, Pérez-Laguna V, García-Luque I, Revillo MJ, Rezusta A (2015) In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol 15:187PubMedPubMedCentralCrossRef Soria-Lozano P, Gilaberte Y, Paz-Cristobal MP, Pérez-Artiaga L, Lampaya-Pérez V, Aporta J, Pérez-Laguna V, García-Luque I, Revillo MJ, Rezusta A (2015) In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol 15:187PubMedPubMedCentralCrossRef
35.
go back to reference Pérez-Laguna V, Pérez-Artiaga L, Lampaya-Pérez V, López SC, García-Luque I, Revillo MJ, Nonell S, Gilaberte Y, Rezusta A (2017) Comparative effect of photodynamic therapy on separated or mixed cultures of Streptococcus mutans and Streptococcus sanguinis. Photodiagnosis Photodyn Ther 19:98–102PubMedCrossRef Pérez-Laguna V, Pérez-Artiaga L, Lampaya-Pérez V, López SC, García-Luque I, Revillo MJ, Nonell S, Gilaberte Y, Rezusta A (2017) Comparative effect of photodynamic therapy on separated or mixed cultures of Streptococcus mutans and Streptococcus sanguinis. Photodiagnosis Photodyn Ther 19:98–102PubMedCrossRef
36.
go back to reference Ichinose-Tsuno A, Aoki A, Takeuchi Y, Kirikae T, Shimbo T, Lee MC, Yoshino F, Maruoka Y, Itoh T, Ishikawa I, Izumi Y (2014) Antimicrobial photodynamic therapy suppresses dental plaque formation in healthy adults: a randomized controlled clinical trial. BMC Oral Health 14:152PubMedPubMedCentralCrossRef Ichinose-Tsuno A, Aoki A, Takeuchi Y, Kirikae T, Shimbo T, Lee MC, Yoshino F, Maruoka Y, Itoh T, Ishikawa I, Izumi Y (2014) Antimicrobial photodynamic therapy suppresses dental plaque formation in healthy adults: a randomized controlled clinical trial. BMC Oral Health 14:152PubMedPubMedCentralCrossRef
37.
go back to reference Feuerstein O, Ginsburg I, Dayan E, Veler D, Weiss EI (2005) Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem Photobiol 81(5):1186–1189PubMedCrossRef Feuerstein O, Ginsburg I, Dayan E, Veler D, Weiss EI (2005) Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem Photobiol 81(5):1186–1189PubMedCrossRef
38.
go back to reference Sterer N, Feuerstein O (2005) Effect of visible light on malodour production by mixed oral microflora. J Med Microbiol 54(Pt 12):1225–1229PubMedCrossRef Sterer N, Feuerstein O (2005) Effect of visible light on malodour production by mixed oral microflora. J Med Microbiol 54(Pt 12):1225–1229PubMedCrossRef
39.
go back to reference Khaengraeng R, Reed RH (2005) Oxygen and photoinactivation of Escherichia coli in UVA and sunlight. J Appl Microbiol 99(1):39–50PubMedCrossRef Khaengraeng R, Reed RH (2005) Oxygen and photoinactivation of Escherichia coli in UVA and sunlight. J Appl Microbiol 99(1):39–50PubMedCrossRef
40.
42.
go back to reference Tardu M, Bulut S, Kavakli IH (2017) MerR and ChrR mediate blue light induced photo-oxidative stress response at the transcriptional level in Vibrio cholerae. Sci Rep 18(7):40817CrossRef Tardu M, Bulut S, Kavakli IH (2017) MerR and ChrR mediate blue light induced photo-oxidative stress response at the transcriptional level in Vibrio cholerae. Sci Rep 18(7):40817CrossRef
43.
go back to reference Chui C, Hiratsuka K, Aoki A, Takeuchi Y, Abiko Y, Izumi Y (2012) Blue LED inhibits the growth of Porphyromonas gingivalis by suppressing the expression of genes associated with DNA replication and cell division. Lasers Surg Med. 44(10):856–864PubMedCrossRef Chui C, Hiratsuka K, Aoki A, Takeuchi Y, Abiko Y, Izumi Y (2012) Blue LED inhibits the growth of Porphyromonas gingivalis by suppressing the expression of genes associated with DNA replication and cell division. Lasers Surg Med. 44(10):856–864PubMedCrossRef
44.
go back to reference Kreth J, Merritt J, Shi W, Qi F (2005) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187(21):7193–7203PubMedPubMedCentralCrossRef Kreth J, Merritt J, Shi W, Qi F (2005) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187(21):7193–7203PubMedPubMedCentralCrossRef
45.
go back to reference Kuramitsu HK, He X, Lux R, Anderson MH, Shi W (2007) Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71(4):653–670PubMedPubMedCentralCrossRef Kuramitsu HK, He X, Lux R, Anderson MH, Shi W (2007) Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71(4):653–670PubMedPubMedCentralCrossRef
Metadata
Title
Exposure of Streptococcus mutans and Streptococcus sanguinis to blue light in an oral biofilm model
Authors
Maayan Vaknin
Doron Steinberg
John D. Featherstone
Osnat Feuerstein
Publication date
01-04-2020
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 3/2020
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-019-02903-4

Other articles of this Issue 3/2020

Lasers in Medical Science 3/2020 Go to the issue