Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 3/2020

01-03-2020 | Strabismus | Pediatrics

Topographical profiles of macula and optic nerve head in concomitant strabismus patients as measured using OCT and CSLO

Authors: Yun Wen, Jianhua Yan, Zhonghao Wang, Tao Shen, Xuan Qiu, Daming Deng, Jingchang Chen

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 3/2020

Login to get access

Abstract

Purpose

Investigate morphological changes of macula and optic nerve head (ONH) in concomitant strabismic patients using optical coherence tomography (OCT) and confocal scanning laser ophthalmoscopy (CSLO).

Methods

A cross-sectional study conducted from April 2017 to February 2018 at the Zhongshan Ophthalmic Center, Sun Yat-sen University. Spectral-domain (SD)-OCT and CSLO were used to observe morphological changes of macula and ONH in concomitant strabismic patients with normal vision and healthy controls. In each subject, a 6-mm diameter zone centered at the fovea was scanned and topographical images of the ONH and peripapillary retina were generated. Fundus parameters were recorded and analyzed.

Results

A total of 138 cases, including 29 patients with concomitant esotropia (ET), 38 constant exotropia (XT), 42 intermittent exotropia (IXT), and 29 healthy controls, were recruited. Compared with controls, OCT revealed that the thickness of nasal intraretinal layers (IRLs) in ET patients was significantly increased, particularly in ganglion cell layer (GCL) and inner nuclear layer (INL). In XT patients, the temporal half of outer retinal layers (ORLs) showed significant increases in thickness. CSLO findings revealed significant changes in the ONH of ET patients consisting of a thinner retinal nerve fiber layer (RNFL) and a decreased RNFL cross-sectional area, height variation contour, maximum contour depression, and contour line modulation (CLM) temporal-superior area. The nasal-superior cup area and rim volume in XT patients were significantly increased.

Conclusion

Topographical profiles of the macula and ONH in concomitant strabismic patients with normal vision present with specific regularities.
Literature
1.
go back to reference Hart NJ, Koronyo Y, Black KL, Koronyohamaoui M (2016) Ocular indicators of Alzheimer’s: exploring disease in the retina. Acta Neuropathologica 132(6):1–21CrossRef Hart NJ, Koronyo Y, Black KL, Koronyohamaoui M (2016) Ocular indicators of Alzheimer’s: exploring disease in the retina. Acta Neuropathologica 132(6):1–21CrossRef
2.
go back to reference Guibor GP (1953) Some eye defects seen in cerebral palsy, with some statistics. Am J Phys Med 32(6):342–347PubMed Guibor GP (1953) Some eye defects seen in cerebral palsy, with some statistics. Am J Phys Med 32(6):342–347PubMed
3.
go back to reference Kim MJ, Lee EJ, Kim TW (2010) Peripapillary retinal nerve fibre layer thickness profile in subjects with myopia measured using the Stratus optical coherence tomography. British Journal of Ophthalmology 94(1):115CrossRef Kim MJ, Lee EJ, Kim TW (2010) Peripapillary retinal nerve fibre layer thickness profile in subjects with myopia measured using the Stratus optical coherence tomography. British Journal of Ophthalmology 94(1):115CrossRef
4.
go back to reference Szigeti A, Tátrai E, Szamosi A, Vargha P, Nagy ZZ, Németh J, Debuc DC, Somfai GM (2014) A morphological study of retinal changes in unilateral amblyopia using optical coherence tomography image segmentation. Plos One 9(2):e88363CrossRef Szigeti A, Tátrai E, Szamosi A, Vargha P, Nagy ZZ, Németh J, Debuc DC, Somfai GM (2014) A morphological study of retinal changes in unilateral amblyopia using optical coherence tomography image segmentation. Plos One 9(2):e88363CrossRef
5.
go back to reference Xu Q, Li Y, Cheng Y, Qu Y (2018) Assessment of the effect of age on macular layer thickness in a healthy Chinese cohort using spectral-domain optical coherence tomography. Bmc Ophthalmology 18(1):169CrossRef Xu Q, Li Y, Cheng Y, Qu Y (2018) Assessment of the effect of age on macular layer thickness in a healthy Chinese cohort using spectral-domain optical coherence tomography. Bmc Ophthalmology 18(1):169CrossRef
6.
go back to reference Glucksmann A (1950) Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc 26(1):59–86CrossRef Glucksmann A (1950) Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc 26(1):59–86CrossRef
8.
go back to reference Ballard KJ, Holt SJ (1968) Cytological and cytochemical studies on cell death and digestion in the foetal rat foot: the role of macrophages and hydrolytic enzymes. Journal of Cell Science 3(2):245PubMed Ballard KJ, Holt SJ (1968) Cytological and cytochemical studies on cell death and digestion in the foetal rat foot: the role of macrophages and hydrolytic enzymes. Journal of Cell Science 3(2):245PubMed
9.
go back to reference Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262(5134):695–700CrossRef Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262(5134):695–700CrossRef
10.
go back to reference Jacobson MD, Weil M, Raff MC (1997) Programmed Cell Death in Animal Development. Cell 88(3):347–354CrossRef Jacobson MD, Weil M, Raff MC (1997) Programmed Cell Death in Animal Development. Cell 88(3):347–354CrossRef
11.
go back to reference Buss RR, Oppenheim RW (2004) Role of programmed cell death in normal neuronal development and function. Anatomical Sci Int 79(4):191–197CrossRef Buss RR, Oppenheim RW (2004) Role of programmed cell death in normal neuronal development and function. Anatomical Sci Int 79(4):191–197CrossRef
12.
go back to reference Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Reiv Neurosci 6(11):877–888CrossRef Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Reiv Neurosci 6(11):877–888CrossRef
13.
go back to reference Economides JR, Adams DL, Horton JC (2012) Perception via the deviated eye in strabismus. J Neurosci 32(30):10286–10295CrossRef Economides JR, Adams DL, Horton JC (2012) Perception via the deviated eye in strabismus. J Neurosci 32(30):10286–10295CrossRef
16.
go back to reference Fu Y (2010) Phototransduction: Phototransduction in Rods. Encyclopedia of the Eye 44(21):397–402CrossRef Fu Y (2010) Phototransduction: Phototransduction in Rods. Encyclopedia of the Eye 44(21):397–402CrossRef
17.
go back to reference Bedell HD, Flom MC (1981) Monocular spatial distortion in strabismic amblyopia. Invest Ophthalmol Vis Sci 20(2):263–268PubMed Bedell HD, Flom MC (1981) Monocular spatial distortion in strabismic amblyopia. Invest Ophthalmol Vis Sci 20(2):263–268PubMed
18.
go back to reference Bedell HE, Flom MC (1983) Normal and abnormal space perception. American Journal of Optometry & Physiological Optics 60(6):426–435CrossRef Bedell HE, Flom MC (1983) Normal and abnormal space perception. American Journal of Optometry & Physiological Optics 60(6):426–435CrossRef
19.
go back to reference Sireteanu R, Lagreze WD, Constantinescu DH (1993) Distortions in two-dimensional visual space perception in strabismic observers. Vision Research 33(5–6):677–690CrossRef Sireteanu R, Lagreze WD, Constantinescu DH (1993) Distortions in two-dimensional visual space perception in strabismic observers. Vision Research 33(5–6):677–690CrossRef
20.
go back to reference Klein SA, Levi DM (1987) Position sense of the peripheral retina. J Optical Soc Am Optics Image Sci 4(8):1543CrossRef Klein SA, Levi DM (1987) Position sense of the peripheral retina. J Optical Soc Am Optics Image Sci 4(8):1543CrossRef
21.
go back to reference Hussain Z, Svensson CM, Besle J, Webb BS, Barrett BT, Mcgraw PV (2015) Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects. J Vis 15(2):1–16CrossRef Hussain Z, Svensson CM, Besle J, Webb BS, Barrett BT, Mcgraw PV (2015) Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects. J Vis 15(2):1–16CrossRef
22.
go back to reference Hess RF, Field DJ (1994) Is the spatial deficit in strabismic amblyopia due to loss of cells or an uncalibrated disarray of cells? Vision Res 34(24):3397–3406CrossRef Hess RF, Field DJ (1994) Is the spatial deficit in strabismic amblyopia due to loss of cells or an uncalibrated disarray of cells? Vision Res 34(24):3397–3406CrossRef
23.
go back to reference Clavagnier S, Dumoulin SO, Hess RF (2015) Is the Cortical Deficit in Amblyopia Due to Reduced Cortical Magnification, Loss of Neural Resolution, or Neural Disorganization? Journal of Neuroscience the Official Journal of the Society for Neuroscience 35(44):14740–14755CrossRef Clavagnier S, Dumoulin SO, Hess RF (2015) Is the Cortical Deficit in Amblyopia Due to Reduced Cortical Magnification, Loss of Neural Resolution, or Neural Disorganization? Journal of Neuroscience the Official Journal of the Society for Neuroscience 35(44):14740–14755CrossRef
24.
go back to reference Yu C, Levi DM (1998) Naso-temporal asymmetry of spatial interactions in strabismic amblyopia. Optometry & Vision Science Official Publication of the American Academy of Optometry 75(6):424–432CrossRef Yu C, Levi DM (1998) Naso-temporal asymmetry of spatial interactions in strabismic amblyopia. Optometry & Vision Science Official Publication of the American Academy of Optometry 75(6):424–432CrossRef
25.
go back to reference Li X, Mullen KT, Thompson B, Hess RF (2011) Effective connectivity anomalies in human amblyopia. Neuroimage 54(1):505CrossRef Li X, Mullen KT, Thompson B, Hess RF (2011) Effective connectivity anomalies in human amblyopia. Neuroimage 54(1):505CrossRef
26.
go back to reference Jennings JA (1985) Anomalous retinal correspondence--a review. Ophthalmic Physiol Opt 5(4):357–368CrossRef Jennings JA (1985) Anomalous retinal correspondence--a review. Ophthalmic Physiol Opt 5(4):357–368CrossRef
27.
go back to reference Gupta S, Kumaran SS, Saxena R, Gudwani S, Menon V, Sharma P (2016) BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy. Int Ophthalmol 36(4):557–568CrossRef Gupta S, Kumaran SS, Saxena R, Gudwani S, Menon V, Sharma P (2016) BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy. Int Ophthalmol 36(4):557–568CrossRef
30.
go back to reference Tychsen L, Burkhalter A (1995) Neuroanatomic abnormalities of primary visual cortex in macaque monkeys with infantile esotropia: preliminary results. J Pediatr Ophthalmol Strabismus 32(5):323–328PubMed Tychsen L, Burkhalter A (1995) Neuroanatomic abnormalities of primary visual cortex in macaque monkeys with infantile esotropia: preliminary results. J Pediatr Ophthalmol Strabismus 32(5):323–328PubMed
Metadata
Title
Topographical profiles of macula and optic nerve head in concomitant strabismus patients as measured using OCT and CSLO
Authors
Yun Wen
Jianhua Yan
Zhonghao Wang
Tao Shen
Xuan Qiu
Daming Deng
Jingchang Chen
Publication date
01-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 3/2020
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-019-04507-8

Other articles of this Issue 3/2020

Graefe's Archive for Clinical and Experimental Ophthalmology 3/2020 Go to the issue