Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2010

01-12-2010 | NON-THEMATIC REVIEW

Stem cell marker olfactomedin 4: critical appraisal of its characteristics and role in tumorigenesis

Authors: Phulwinder K. Grover, Jennifer E. Hardingham, Adrian G. Cummins

Published in: Cancer and Metastasis Reviews | Issue 4/2010

Login to get access

Abstract

Olfactomedin 4 (OLFM4), a member of the olfactomedin domain-containing proteins, is a glycoprotein with molecular weight of approximately 64 kDa. The protein is a “robust marker” of Lgr5+ stem cells and has been localised to mitochondria, nuclei and cell membranes. The bulk of OLFM4 exists in a polymeric form which is held together by disulfide bonds and carbohydrate interactions. Earlier studies revealed that the protein binds to lectins and cadherins, and facilitates cell–cell adhesion. Recent data demonstrated that the protein possesses several hallmarks of carcinogenesis. OLFM4 has also been purported to be an inducible resistance factor to apoptotic stimuli such as radiation and anticancer drugs. Here, we review its synonyms and classification, gene structure, protein structure, intracellular and tissue distribution, adhesive and antiapoptotic; mitotic; migratory and cell cycle regulatory characteristics. We also critically evaluate recent advances in understanding of the transcriptional regulation of OLFM4 and its upstream signalling pathways with special emphasis on carcinogenesis and outline future perspectives in the field.
Literature
1.
go back to reference Tomarev, S. I., & Nakaya, N. (2009). Olfactomedin domain-containing proteins: possible mechanisms of action and functions in normal development and pathology. Molecular Neurobiology, 40(2), 122–138.PubMedCrossRef Tomarev, S. I., & Nakaya, N. (2009). Olfactomedin domain-containing proteins: possible mechanisms of action and functions in normal development and pathology. Molecular Neurobiology, 40(2), 122–138.PubMedCrossRef
2.
go back to reference Bal, R. S., & Anholt, R. R. (1993). Formation of the extracellular mucous matrix of olfactory neuroepithelium: identification of partially glycosylated and nonglycosylated precursors of olfactomedin. Biochemistry, 32(4), 1047–1053.PubMedCrossRef Bal, R. S., & Anholt, R. R. (1993). Formation of the extracellular mucous matrix of olfactory neuroepithelium: identification of partially glycosylated and nonglycosylated precursors of olfactomedin. Biochemistry, 32(4), 1047–1053.PubMedCrossRef
3.
go back to reference Snyder, D. A., Rivers, A. M., Yokoe, H., Menco, B. P., & Anholt, R. R. (1991). Olfactomedin: purification, characterization, and localization of a novel olfactory glycoprotein. Biochemistry, 30(38), 9143–9153.PubMedCrossRef Snyder, D. A., Rivers, A. M., Yokoe, H., Menco, B. P., & Anholt, R. R. (1991). Olfactomedin: purification, characterization, and localization of a novel olfactory glycoprotein. Biochemistry, 30(38), 9143–9153.PubMedCrossRef
4.
go back to reference Yokoe, H., & Anholt, R. R. (1993). Molecular cloning of olfactomedin, an extracellular matrix protein specific to olfactory neuroepithelium. Proceedings of the National Academy of Sciences of the United States of America, 90(10), 4655–4659.PubMedCrossRef Yokoe, H., & Anholt, R. R. (1993). Molecular cloning of olfactomedin, an extracellular matrix protein specific to olfactory neuroepithelium. Proceedings of the National Academy of Sciences of the United States of America, 90(10), 4655–4659.PubMedCrossRef
5.
go back to reference Clevers, H. (2006). Wnt/[beta]-catenin signaling in development and disease. Cell, 127(3), 469–480.PubMedCrossRef Clevers, H. (2006). Wnt/[beta]-catenin signaling in development and disease. Cell, 127(3), 469–480.PubMedCrossRef
6.
go back to reference Croce, J. C., & McClay, D. R. (2008). Evolution of the Wnt pathways. Methods in Molecular Biology, 469, 3–18.PubMedCrossRef Croce, J. C., & McClay, D. R. (2008). Evolution of the Wnt pathways. Methods in Molecular Biology, 469, 3–18.PubMedCrossRef
7.
go back to reference Gregorieff, A., Pinto, D., Begthel, H., Destree, O., Kielman, M., & Clevers, H. (2005). Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology, 129(2), 626–638.PubMed Gregorieff, A., Pinto, D., Begthel, H., Destree, O., Kielman, M., & Clevers, H. (2005). Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology, 129(2), 626–638.PubMed
8.
go back to reference MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 17(1), 9–26.PubMedCrossRef MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 17(1), 9–26.PubMedCrossRef
9.
go back to reference Johnson, D. H. (2000). Myocilin and glaucoma: a TIGR by the tail? Archives of Ophthalmology, 118(7), 974–978.PubMed Johnson, D. H. (2000). Myocilin and glaucoma: a TIGR by the tail? Archives of Ophthalmology, 118(7), 974–978.PubMed
10.
go back to reference Resch, Z. T., & Fautsch, M. P. (2009). Glaucoma-associated myocilin: a better understanding but much more to learn. Experimental Eye Research, 88(4), 704–712.PubMedCrossRef Resch, Z. T., & Fautsch, M. P. (2009). Glaucoma-associated myocilin: a better understanding but much more to learn. Experimental Eye Research, 88(4), 704–712.PubMedCrossRef
11.
go back to reference Tamm, E. R. (2002). Myocilin and glaucoma: facts and ideas. Progress in Retinal and Eye Research, 21(4), 395–428.PubMedCrossRef Tamm, E. R. (2002). Myocilin and glaucoma: facts and ideas. Progress in Retinal and Eye Research, 21(4), 395–428.PubMedCrossRef
12.
go back to reference Adam, M. F., Belmouden, A., Binisti, P., Brezin, A. P., Valtot, F., Bechetoille, A., et al. (1997). Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of tigr in familial open-angle glaucoma. Human Molecular Genetics, 6(12), 2091–2097.PubMedCrossRef Adam, M. F., Belmouden, A., Binisti, P., Brezin, A. P., Valtot, F., Bechetoille, A., et al. (1997). Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of tigr in familial open-angle glaucoma. Human Molecular Genetics, 6(12), 2091–2097.PubMedCrossRef
13.
go back to reference Fingert, J. H., Heon, E., Liebmann, J. M., Yamamoto, T., Craig, J. E., Rait, J., et al. (1999). Analysis of myocilin mutations in 1,703 glaucoma patients from five different populations. Human Molecular Genetics, 8(5), 899–905.PubMedCrossRef Fingert, J. H., Heon, E., Liebmann, J. M., Yamamoto, T., Craig, J. E., Rait, J., et al. (1999). Analysis of myocilin mutations in 1,703 glaucoma patients from five different populations. Human Molecular Genetics, 8(5), 899–905.PubMedCrossRef
14.
go back to reference Fingert, J. H., Stone, E. M., Sheffield, V. C., & Alward, W. L. (2002). Myocilin glaucoma. Survey of Ophthalmology, 47(6), 547–561.PubMedCrossRef Fingert, J. H., Stone, E. M., Sheffield, V. C., & Alward, W. L. (2002). Myocilin glaucoma. Survey of Ophthalmology, 47(6), 547–561.PubMedCrossRef
15.
go back to reference Kwon, H. S., Lee, H. S., Ji, Y., Rubin, J. S., & Tomarev, S. I. (2009). Myocilin is a modulator of Wnt signaling. Molecular and Cellular Biology, 29(8), 2139–2154.PubMedCrossRef Kwon, H. S., Lee, H. S., Ji, Y., Rubin, J. S., & Tomarev, S. I. (2009). Myocilin is a modulator of Wnt signaling. Molecular and Cellular Biology, 29(8), 2139–2154.PubMedCrossRef
16.
go back to reference Kwon, Y. H., Fingert, J. H., Kuehn, M. H., & Alward, W. L. (2009). Primary open-angle glaucoma. The New England Journal of Medicine, 360(11), 1113–1124.PubMedCrossRef Kwon, Y. H., Fingert, J. H., Kuehn, M. H., & Alward, W. L. (2009). Primary open-angle glaucoma. The New England Journal of Medicine, 360(11), 1113–1124.PubMedCrossRef
17.
go back to reference Stone, E. M., Fingert, J. H., Alward, W. L., Nguyen, T. D., Polansky, J. R., Sunden, S. L., et al. (1997). Identification of a gene that causes primary open angle glaucoma. Science, 275(5300), 668–670.PubMedCrossRef Stone, E. M., Fingert, J. H., Alward, W. L., Nguyen, T. D., Polansky, J. R., Sunden, S. L., et al. (1997). Identification of a gene that causes primary open angle glaucoma. Science, 275(5300), 668–670.PubMedCrossRef
18.
go back to reference Hillier, B. J., & Vacquier, V. D. (2003). Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes. The Journal of Cell Biology, 160(4), 597–604.PubMedCrossRef Hillier, B. J., & Vacquier, V. D. (2003). Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes. The Journal of Cell Biology, 160(4), 597–604.PubMedCrossRef
19.
go back to reference Karavanich, C. A., & Anholt, R. R. (1998). Molecular evolution of olfactomedin. Molecular Biology and Evolution, 15(6), 718–726.PubMed Karavanich, C. A., & Anholt, R. R. (1998). Molecular evolution of olfactomedin. Molecular Biology and Evolution, 15(6), 718–726.PubMed
20.
go back to reference Kulkarni, N. H., Karavanich, C. A., Atchley, W. R., & Anholt, R. R. (2000). Characterization and differential expression of a human gene family of olfactomedin-related proteins. Genetical Research, 76(1), 41–50.PubMedCrossRef Kulkarni, N. H., Karavanich, C. A., Atchley, W. R., & Anholt, R. R. (2000). Characterization and differential expression of a human gene family of olfactomedin-related proteins. Genetical Research, 76(1), 41–50.PubMedCrossRef
21.
go back to reference Loria, P. M., Hodgkin, J., & Hobert, O. (2004). A conserved postsynaptic transmembrane protein affecting neuromuscular signaling in Caenorhabditis elegans. The Journal of Neuroscience, 24(9), 2191–2201.PubMedCrossRef Loria, P. M., Hodgkin, J., & Hobert, O. (2004). A conserved postsynaptic transmembrane protein affecting neuromuscular signaling in Caenorhabditis elegans. The Journal of Neuroscience, 24(9), 2191–2201.PubMedCrossRef
22.
go back to reference Meyer, E., Aglyamova, G. V., Wang, S., Buchanan-Carter, J., Abrego, D., Colbourne, J. K., et al. (2009). Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFLx. BMC Genomics, 10, 219.PubMedCrossRef Meyer, E., Aglyamova, G. V., Wang, S., Buchanan-Carter, J., Abrego, D., Colbourne, J. K., et al. (2009). Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFLx. BMC Genomics, 10, 219.PubMedCrossRef
23.
go back to reference Zeng, L. C., Han, Z. G., & Ma, W. J. (2005). Elucidation of subfamily segregation and intramolecular coevolution of the olfactomedin-like proteins by comprehensive phylogenetic analysis and gene expression pattern assessment. FEBS Letters, 579(25), 5443–5453.PubMedCrossRef Zeng, L. C., Han, Z. G., & Ma, W. J. (2005). Elucidation of subfamily segregation and intramolecular coevolution of the olfactomedin-like proteins by comprehensive phylogenetic analysis and gene expression pattern assessment. FEBS Letters, 579(25), 5443–5453.PubMedCrossRef
24.
go back to reference Hillier, B. J., Moy, G. W., & Vacquier, V. D. (2007). Diversity of olfactomedin proteins in the sea urchin. Genomics, 89(6), 721–730.PubMedCrossRef Hillier, B. J., Moy, G. W., & Vacquier, V. D. (2007). Diversity of olfactomedin proteins in the sea urchin. Genomics, 89(6), 721–730.PubMedCrossRef
25.
go back to reference Mukhopadhyay, A., Talukdar, S., Bhattacharjee, A., & Ray, K. (2004). Bioinformatic approaches for identification and characterization of olfactomedin related genes with a potential role in pathogenesis of ocular disorders. Molecular Vision, 10, 304–314.PubMed Mukhopadhyay, A., Talukdar, S., Bhattacharjee, A., & Ray, K. (2004). Bioinformatic approaches for identification and characterization of olfactomedin related genes with a potential role in pathogenesis of ocular disorders. Molecular Vision, 10, 304–314.PubMed
26.
go back to reference van der Flier, L. G., Haegebarth, A., Stange, D. E., van de Wetering, M., & Clevers, H. (2009). Olfm4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology, 137(1), 15–17.PubMedCrossRef van der Flier, L. G., Haegebarth, A., Stange, D. E., van de Wetering, M., & Clevers, H. (2009). Olfm4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology, 137(1), 15–17.PubMedCrossRef
27.
go back to reference van der Flier, L. G., van Gijn, M. E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D. E., et al. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell, 136(5), 903–912.PubMedCrossRef van der Flier, L. G., van Gijn, M. E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D. E., et al. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell, 136(5), 903–912.PubMedCrossRef
28.
go back to reference Barker, N., & Clevers, H. (2010). Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology, 138(5), 1681–1696.PubMedCrossRef Barker, N., & Clevers, H. (2010). Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology, 138(5), 1681–1696.PubMedCrossRef
29.
go back to reference Barker, N., Ridgway, R. A., van Es, J. H., van de Wetering, M., Begthel, H., van den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.PubMedCrossRef Barker, N., Ridgway, R. A., van Es, J. H., van de Wetering, M., Begthel, H., van den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.PubMedCrossRef
30.
go back to reference Boman, B. M., & Wicha, M. S. (2008). Cancer stem cells: a step toward the cure. Journal of Clinical Oncology, 26(17), 2795–2799.PubMedCrossRef Boman, B. M., & Wicha, M. S. (2008). Cancer stem cells: a step toward the cure. Journal of Clinical Oncology, 26(17), 2795–2799.PubMedCrossRef
31.
go back to reference Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.PubMedCrossRef Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.PubMedCrossRef
32.
go back to reference Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. The New England Journal of Medicine, 355(12), 1253–1261.PubMedCrossRef Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. The New England Journal of Medicine, 355(12), 1253–1261.PubMedCrossRef
33.
go back to reference Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMedCrossRef Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMedCrossRef
34.
go back to reference Rosenbauer, F., Wagner, K., Zhang, P., Knobeloch, K. P., Iwama, A., & Tenen, D. G. (2004). pDP4, a novel glycoprotein secreted by mature granulocytes, is regulated by transcription factor PU.1. Blood, 103(11), 4294–4301.PubMedCrossRef Rosenbauer, F., Wagner, K., Zhang, P., Knobeloch, K. P., Iwama, A., & Tenen, D. G. (2004). pDP4, a novel glycoprotein secreted by mature granulocytes, is regulated by transcription factor PU.1. Blood, 103(11), 4294–4301.PubMedCrossRef
35.
go back to reference Shinozaki, S., Nakamura, T., Iimura, M., Kato, Y., Iizuka, B., Kobayashi, M., et al. (2001). Upregulation of Reg 1alpha and GW112 in the epithelium of inflamed colonic mucosa. Gut, 48(5), 623–629.PubMedCrossRef Shinozaki, S., Nakamura, T., Iimura, M., Kato, Y., Iizuka, B., Kobayashi, M., et al. (2001). Upregulation of Reg 1alpha and GW112 in the epithelium of inflamed colonic mucosa. Gut, 48(5), 623–629.PubMedCrossRef
36.
go back to reference Zhang, J., Liu, W. L., Tang, D. C., Chen, L., Wang, M., Pack, S. D., et al. (2002). Identification and characterization of a novel member of olfactomedin-related protein family, hGC-1, expressed during myeloid lineage development. Gene, 283(1–2), 83–93.PubMedCrossRef Zhang, J., Liu, W. L., Tang, D. C., Chen, L., Wang, M., Pack, S. D., et al. (2002). Identification and characterization of a novel member of olfactomedin-related protein family, hGC-1, expressed during myeloid lineage development. Gene, 283(1–2), 83–93.PubMedCrossRef
37.
go back to reference Zhang, X., Huang, Q., Yang, Z., Li, Y., & Li, C. Y. (2004). Gw112, a novel antiapoptotic protein that promotes tumor growth. Cancer Research, 64(7), 2474–2481.PubMedCrossRef Zhang, X., Huang, Q., Yang, Z., Li, Y., & Li, C. Y. (2004). Gw112, a novel antiapoptotic protein that promotes tumor growth. Cancer Research, 64(7), 2474–2481.PubMedCrossRef
38.
go back to reference Liu, W., Chen, L., Zhu, J., & Rodgers, G. P. (2006). The glycoprotein hGC-1 binds to cadherin and lectins. Experimental Cell Research, 312(10), 1785–1797.PubMedCrossRef Liu, W., Chen, L., Zhu, J., & Rodgers, G. P. (2006). The glycoprotein hGC-1 binds to cadherin and lectins. Experimental Cell Research, 312(10), 1785–1797.PubMedCrossRef
39.
go back to reference Fautsch, M. P., & Johnson, D. H. (2001). Characterization of myocilin–myocilin interactions. Invest Ophthalmol Vis Sci, 42(10), 2324–2331.PubMed Fautsch, M. P., & Johnson, D. H. (2001). Characterization of myocilin–myocilin interactions. Invest Ophthalmol Vis Sci, 42(10), 2324–2331.PubMed
40.
go back to reference Chin, K. L., Aerbajinai, W., Zhu, J., Drew, L., Chen, L., Liu, W., et al. (2008). The regulation of OLFM4 expression in myeloid precursor cells relies on NF-kappaB transcription factor. British Journal Haematology, 143(3), 421–432.CrossRef Chin, K. L., Aerbajinai, W., Zhu, J., Drew, L., Chen, L., Liu, W., et al. (2008). The regulation of OLFM4 expression in myeloid precursor cells relies on NF-kappaB transcription factor. British Journal Haematology, 143(3), 421–432.CrossRef
41.
go back to reference Kim, K. K., Park, K. S., Song, S. B., & Kim, K. E. (2010). Up regulation of GW112 gene by NF kappaB promotes an antiapoptotic property in gastric cancer cells. Molecular Carcinogenesis, 49(3), 259–270.PubMed Kim, K. K., Park, K. S., Song, S. B., & Kim, K. E. (2010). Up regulation of GW112 gene by NF kappaB promotes an antiapoptotic property in gastric cancer cells. Molecular Carcinogenesis, 49(3), 259–270.PubMed
42.
go back to reference Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene expression by alternative promoters. The FASEB Journal, 10(4), 453–460.PubMed Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene expression by alternative promoters. The FASEB Journal, 10(4), 453–460.PubMed
43.
go back to reference Baek, D., Davis, C., Ewing, B., Gordon, D., & Green, P. (2007). Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters. Genome Research, 17(2), 145–155.PubMedCrossRef Baek, D., Davis, C., Ewing, B., Gordon, D., & Green, P. (2007). Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters. Genome Research, 17(2), 145–155.PubMedCrossRef
44.
go back to reference Davuluri, R. V., Suzuki, Y., Sugano, S., Plass, C., & Huang, T. H. (2008). The functional consequences of alternative promoter use in mammalian genomes. Trends in Genetics, 24(4), 167–177.PubMedCrossRef Davuluri, R. V., Suzuki, Y., Sugano, S., Plass, C., & Huang, T. H. (2008). The functional consequences of alternative promoter use in mammalian genomes. Trends in Genetics, 24(4), 167–177.PubMedCrossRef
45.
go back to reference Burke, T. W., & Kadonaga, J. T. (1997). The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes & Development, 11(22), 3020–3031.CrossRef Burke, T. W., & Kadonaga, J. T. (1997). The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes & Development, 11(22), 3020–3031.CrossRef
46.
go back to reference Deng, W., & Roberts, S. G. (2005). A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes & Development, 19(20), 2418–2423.CrossRef Deng, W., & Roberts, S. G. (2005). A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes & Development, 19(20), 2418–2423.CrossRef
47.
go back to reference Lee, D. H., Gershenzon, N., Gupta, M., Ioshikhes, I. P., Reinberg, D., & Lewis, B. A. (2005). Functional characterization of core promoter elements: the downstream core element is recognized by TAF1. Molecular and Cellular Biology, 25(21), 9674–9686.PubMedCrossRef Lee, D. H., Gershenzon, N., Gupta, M., Ioshikhes, I. P., Reinberg, D., & Lewis, B. A. (2005). Functional characterization of core promoter elements: the downstream core element is recognized by TAF1. Molecular and Cellular Biology, 25(21), 9674–9686.PubMedCrossRef
48.
go back to reference Smale, S. T., & Kadonaga, J. T. (2003). The RNA polymerase II core promoter. Annual Review of Biochemistry, 72, 449–479.PubMedCrossRef Smale, S. T., & Kadonaga, J. T. (2003). The RNA polymerase II core promoter. Annual Review of Biochemistry, 72, 449–479.PubMedCrossRef
49.
go back to reference Liu, W., Yan, M., Liu, Y., Wang, R., Li, C., Deng, C., et al. (2010). Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11056–11061.PubMedCrossRef Liu, W., Yan, M., Liu, Y., Wang, R., Li, C., Deng, C., et al. (2010). Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11056–11061.PubMedCrossRef
50.
51.
go back to reference Halliwell, B. (2003). Oxidative stress in cell culture: an under-appreciated problem? FEBS Letters, 540(1–3), 3–6.PubMedCrossRef Halliwell, B. (2003). Oxidative stress in cell culture: an under-appreciated problem? FEBS Letters, 540(1–3), 3–6.PubMedCrossRef
52.
go back to reference Torres, M., & Forman, H. J. (2003). Redox signaling and the map kinase pathways. Biofactors, 17(1–4), 287–296.PubMedCrossRef Torres, M., & Forman, H. J. (2003). Redox signaling and the map kinase pathways. Biofactors, 17(1–4), 287–296.PubMedCrossRef
53.
go back to reference Duarte, R. F., & Frank, D. A. (2000). SCF and G-CSF lead to the synergistic induction of proliferation and gene expression through complementary signaling pathways. Blood, 96(10), 3422–3430.PubMed Duarte, R. F., & Frank, D. A. (2000). SCF and G-CSF lead to the synergistic induction of proliferation and gene expression through complementary signaling pathways. Blood, 96(10), 3422–3430.PubMed
54.
go back to reference Meplan, C., Richard, M. J., & Hainaut, P. (2000). Redox signalling and transition metals in the control of the p53 pathway. Biochemical Pharmacology, 59(1), 25–33.PubMedCrossRef Meplan, C., Richard, M. J., & Hainaut, P. (2000). Redox signalling and transition metals in the control of the p53 pathway. Biochemical Pharmacology, 59(1), 25–33.PubMedCrossRef
55.
go back to reference Rahman, I., Marwick, J., & Kirkham, P. (2004). Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochemical Pharmacology, 68(6), 1255–1267.PubMedCrossRef Rahman, I., Marwick, J., & Kirkham, P. (2004). Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochemical Pharmacology, 68(6), 1255–1267.PubMedCrossRef
56.
go back to reference Rao, G. N., Katki, K. A., Madamanchi, N. R., Wu, Y., & Birrer, M. J. (1999). JunB forms the majority of the AP-1 complex and is a target for redox regulation by receptor tyrosine kinase and G protein-coupled receptor agonists in smooth muscle cells. The Journal of Biological Chemistry, 274(9), 6003–6010.PubMedCrossRef Rao, G. N., Katki, K. A., Madamanchi, N. R., Wu, Y., & Birrer, M. J. (1999). JunB forms the majority of the AP-1 complex and is a target for redox regulation by receptor tyrosine kinase and G protein-coupled receptor agonists in smooth muscle cells. The Journal of Biological Chemistry, 274(9), 6003–6010.PubMedCrossRef
57.
go back to reference Renner, F., & Schmitz, M. L. (2009). Autoregulatory feedback loops terminating the NF-kappaB response. Trends in Biochemical Sciences, 34(3), 128–135.PubMedCrossRef Renner, F., & Schmitz, M. L. (2009). Autoregulatory feedback loops terminating the NF-kappaB response. Trends in Biochemical Sciences, 34(3), 128–135.PubMedCrossRef
58.
go back to reference Eichbaum, Q. G., Iyer, R., Raveh, D. P., Mathieu, C., & Ezekowitz, R. A. (1994). Restriction of interferon gamma responsiveness and basal expression of the myeloid human Fc gamma R1b gene is mediated by a functional PU.1 site and a transcription initiator consensus. The Journal of Experimental Medicine, 179(6), 1985–1996.PubMedCrossRef Eichbaum, Q. G., Iyer, R., Raveh, D. P., Mathieu, C., & Ezekowitz, R. A. (1994). Restriction of interferon gamma responsiveness and basal expression of the myeloid human Fc gamma R1b gene is mediated by a functional PU.1 site and a transcription initiator consensus. The Journal of Experimental Medicine, 179(6), 1985–1996.PubMedCrossRef
59.
go back to reference Hagemeier, C., Bannister, A. J., Cook, A., & Kouzarides, T. (1993). The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: Rb shows sequence similarity to TFIID and TFIIB. Proceedings of the National Academy of Sciences of the United States of America, 90(4), 1580–1584.PubMedCrossRef Hagemeier, C., Bannister, A. J., Cook, A., & Kouzarides, T. (1993). The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: Rb shows sequence similarity to TFIID and TFIIB. Proceedings of the National Academy of Sciences of the United States of America, 90(4), 1580–1584.PubMedCrossRef
60.
go back to reference Tenen, D. G., Hromas, R., Licht, J. D., & Zhang, D. E. (1997). Transcription factors, normal myeloid development, and leukemia. Blood, 90(2), 489–519.PubMed Tenen, D. G., Hromas, R., Licht, J. D., & Zhang, D. E. (1997). Transcription factors, normal myeloid development, and leukemia. Blood, 90(2), 489–519.PubMed
61.
go back to reference Weintraub, S. J., Chow, K. N., Luo, R. X., Zhang, S. H., He, S., & Dean, D. C. (1995). Mechanism of active transcriptional repression by the retinoblastoma protein. Nature, 375(6534), 812–815.PubMedCrossRef Weintraub, S. J., Chow, K. N., Luo, R. X., Zhang, S. H., He, S., & Dean, D. C. (1995). Mechanism of active transcriptional repression by the retinoblastoma protein. Nature, 375(6534), 812–815.PubMedCrossRef
62.
go back to reference Inoue, J., Gohda, J., Akiyama, T., & Semba, K. (2007). Nf-kappab activation in development and progression of cancer. Cancer Science, 98(3), 268–274.PubMedCrossRef Inoue, J., Gohda, J., Akiyama, T., & Semba, K. (2007). Nf-kappab activation in development and progression of cancer. Cancer Science, 98(3), 268–274.PubMedCrossRef
63.
go back to reference Van Waes, C. (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clinical Cancer Research, 13(4), 1076–1082.PubMedCrossRef Van Waes, C. (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clinical Cancer Research, 13(4), 1076–1082.PubMedCrossRef
64.
go back to reference Shaulian, E., & Karin, M. (2001). Ap-1 in cell proliferation and survival. Oncogene, 20(19), 2390–2400.PubMedCrossRef Shaulian, E., & Karin, M. (2001). Ap-1 in cell proliferation and survival. Oncogene, 20(19), 2390–2400.PubMedCrossRef
65.
go back to reference Vesely, P. W., Staber, P. B., Hoefler, G., & Kenner, L. (2009). Translational regulation mechanisms of AP-1 proteins. Mutation Research, 682(1), 7–12.PubMedCrossRef Vesely, P. W., Staber, P. B., Hoefler, G., & Kenner, L. (2009). Translational regulation mechanisms of AP-1 proteins. Mutation Research, 682(1), 7–12.PubMedCrossRef
66.
go back to reference Gupta, P., Gurudutta, G. U., Verma, Y. K., Kishore, V., Gulati, S., Sharma, R. K., et al. (2006). PU. 1: an ETS family transcription factor that regulates leukemogenesis besides normal hematopoiesis. Stem Cells and Development, 15(4), 609–617.PubMedCrossRef Gupta, P., Gurudutta, G. U., Verma, Y. K., Kishore, V., Gulati, S., Sharma, R. K., et al. (2006). PU. 1: an ETS family transcription factor that regulates leukemogenesis besides normal hematopoiesis. Stem Cells and Development, 15(4), 609–617.PubMedCrossRef
67.
go back to reference Kastner, P., & Chan, S. (2008). PU. 1: a crucial and versatile player in hematopoiesis and leukemia. The International Journal of Biochemistry & Cell Biology, 40(1), 22–27.CrossRef Kastner, P., & Chan, S. (2008). PU. 1: a crucial and versatile player in hematopoiesis and leukemia. The International Journal of Biochemistry & Cell Biology, 40(1), 22–27.CrossRef
68.
go back to reference Baud, V., & Karin, M. (2009). Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nature Reviews. Drug Discovery, 8(1), 33–40.PubMedCrossRef Baud, V., & Karin, M. (2009). Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nature Reviews. Drug Discovery, 8(1), 33–40.PubMedCrossRef
69.
go back to reference Choe, K. S., Ujhelly, O., Wontakal, S. N., & Skoultchi, A. I. (2010). PU. 1 directly regulates cdk6 gene expression, linking the cell proliferation and differentiation programs in erythroid cells. The Journal of Biological Chemistry, 285(5), 3044–3052.PubMedCrossRef Choe, K. S., Ujhelly, O., Wontakal, S. N., & Skoultchi, A. I. (2010). PU. 1 directly regulates cdk6 gene expression, linking the cell proliferation and differentiation programs in erythroid cells. The Journal of Biological Chemistry, 285(5), 3044–3052.PubMedCrossRef
70.
go back to reference Eferl, R., & Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3(11), 859–868.PubMedCrossRef Eferl, R., & Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3(11), 859–868.PubMedCrossRef
71.
go back to reference Lee, C. H., Jeon, Y. T., Kim, S. H., & Song, Y. S. (2007). Nf-kappaB as a potential molecular target for cancer therapy. Biofactors, 29(1), 19–35.PubMedCrossRef Lee, C. H., Jeon, Y. T., Kim, S. H., & Song, Y. S. (2007). Nf-kappaB as a potential molecular target for cancer therapy. Biofactors, 29(1), 19–35.PubMedCrossRef
72.
go back to reference Verde, P., Casalino, L., Talotta, F., Yaniv, M., & Weitzman, J. B. (2007). Deciphering AP-1 function in tumorigenesis: fraternizing on target promoters. Cell Cycle, 6(21), 2633–2639.PubMedCrossRef Verde, P., Casalino, L., Talotta, F., Yaniv, M., & Weitzman, J. B. (2007). Deciphering AP-1 function in tumorigenesis: fraternizing on target promoters. Cell Cycle, 6(21), 2633–2639.PubMedCrossRef
73.
go back to reference Bonadies, N., Neururer, C., Steege, A., Vallabhapurapu, S., Pabst, T., & Mueller, B. U. (2010). PU. 1 is regulated by NF-kappaB through a novel binding site in a 17 kb upstream enhancer element. Oncogene, 29(7), 1062–1072.PubMedCrossRef Bonadies, N., Neururer, C., Steege, A., Vallabhapurapu, S., Pabst, T., & Mueller, B. U. (2010). PU. 1 is regulated by NF-kappaB through a novel binding site in a 17 kb upstream enhancer element. Oncogene, 29(7), 1062–1072.PubMedCrossRef
74.
go back to reference Basseres, D. S., & Baldwin, A. S. (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene, 25(51), 6817–6830.PubMedCrossRef Basseres, D. S., & Baldwin, A. S. (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene, 25(51), 6817–6830.PubMedCrossRef
75.
go back to reference Fan, X. M., Wong, B. C., Wang, W. P., Zhou, X. M., Cho, C. H., Yuen, S. T., et al. (2001). Inhibition of proteasome function induced apoptosis in gastric cancer. International Journal of Cancer, 93(4), 481–488.CrossRef Fan, X. M., Wong, B. C., Wang, W. P., Zhou, X. M., Cho, C. H., Yuen, S. T., et al. (2001). Inhibition of proteasome function induced apoptosis in gastric cancer. International Journal of Cancer, 93(4), 481–488.CrossRef
76.
go back to reference Nakanishi, C., & Toi, M. (2005). Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nature Reviews. Cancer, 5(4), 297–309.PubMedCrossRef Nakanishi, C., & Toi, M. (2005). Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nature Reviews. Cancer, 5(4), 297–309.PubMedCrossRef
77.
go back to reference Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet, R. J., Jr., & Sledge, G. W., Jr. (1997). Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Molecular and Cellular Biology, 17(7), 3629–3639.PubMed Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet, R. J., Jr., & Sledge, G. W., Jr. (1997). Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Molecular and Cellular Biology, 17(7), 3629–3639.PubMed
78.
go back to reference Pacifico, F., & Leonardi, A. (2006). NF-kappaB in solid tumors. Biochemical Pharmacology, 72(9), 1142–1152.PubMedCrossRef Pacifico, F., & Leonardi, A. (2006). NF-kappaB in solid tumors. Biochemical Pharmacology, 72(9), 1142–1152.PubMedCrossRef
79.
go back to reference Bernard, D., Monte, D., Vandenbunder, B., & Abbadie, C. (2002). The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD. Oncogene, 21(28), 4392–4402.PubMedCrossRef Bernard, D., Monte, D., Vandenbunder, B., & Abbadie, C. (2002). The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD. Oncogene, 21(28), 4392–4402.PubMedCrossRef
80.
go back to reference Kaltschmidt, B., Kaltschmidt, C., Hofmann, T. G., Hehner, S. P., Droge, W., & Schmitz, M. L. (2000). The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. European Journal of Biochemistry, 267(12), 3828–3835.PubMedCrossRef Kaltschmidt, B., Kaltschmidt, C., Hofmann, T. G., Hehner, S. P., Droge, W., & Schmitz, M. L. (2000). The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. European Journal of Biochemistry, 267(12), 3828–3835.PubMedCrossRef
81.
go back to reference Sheehy, A. M., & Schlissel, M. S. (1999). Overexpression of RelA causes G1 arrest and apoptosis in a pro-B cell line. The Journal of Biological Chemistry, 274(13), 8708–8716.PubMedCrossRef Sheehy, A. M., & Schlissel, M. S. (1999). Overexpression of RelA causes G1 arrest and apoptosis in a pro-B cell line. The Journal of Biological Chemistry, 274(13), 8708–8716.PubMedCrossRef
82.
go back to reference Tarabin, V., & Schwaninger, M. (2004). The role of NF-kappaB in 6-hydroxydopamine- and TNFalpha-induced apoptosis of PC12 cells. Naunyn-Schmiedebergs Archives of Pharmacology, 369(6), 563–569.CrossRef Tarabin, V., & Schwaninger, M. (2004). The role of NF-kappaB in 6-hydroxydopamine- and TNFalpha-induced apoptosis of PC12 cells. Naunyn-Schmiedebergs Archives of Pharmacology, 369(6), 563–569.CrossRef
83.
go back to reference Chen, F., & Castranova, V. (2007). Nuclear factor-kappaB, an unappreciated tumor suppressor. Cancer Research, 67(23), 11093–11098.PubMedCrossRef Chen, F., & Castranova, V. (2007). Nuclear factor-kappaB, an unappreciated tumor suppressor. Cancer Research, 67(23), 11093–11098.PubMedCrossRef
84.
go back to reference Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441(7092), 431–436.PubMedCrossRef Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441(7092), 431–436.PubMedCrossRef
85.
go back to reference Liu, W., Liu, Y., Zhu, J., Wright, E., Ding, I., & Rodgers, G. P. (2008). Reduced hGC-1 protein expression is associated with malignant progression of colon carcinoma. Clinical Cancer Research, 14(4), 1041–1049.PubMedCrossRef Liu, W., Liu, Y., Zhu, J., Wright, E., Ding, I., & Rodgers, G. P. (2008). Reduced hGC-1 protein expression is associated with malignant progression of colon carcinoma. Clinical Cancer Research, 14(4), 1041–1049.PubMedCrossRef
86.
go back to reference Conrotto, P., Roesli, C., Rybak, J., Kischel, P., Waltregny, D., Neri, D., et al. (2008). Identification of new accessible tumor antigens in human colon cancer by ex vivo protein biotinylation and comparative mass spectrometry analysis. International Journal of Cancer, 123(12), 2856–2864.CrossRef Conrotto, P., Roesli, C., Rybak, J., Kischel, P., Waltregny, D., Neri, D., et al. (2008). Identification of new accessible tumor antigens in human colon cancer by ex vivo protein biotinylation and comparative mass spectrometry analysis. International Journal of Cancer, 123(12), 2856–2864.CrossRef
87.
go back to reference Oue, N., Sentani, K., Noguchi, T., Ohara, S., Sakamoto, N., Hayashi, T., et al. (2009). Serum olfactomedin 4 (GW112, hGC-1) in combination with Reg IV is a highly sensitive biomarker for gastric cancer patients. International Journal of Cancer, 125(10), 2383–2392.CrossRef Oue, N., Sentani, K., Noguchi, T., Ohara, S., Sakamoto, N., Hayashi, T., et al. (2009). Serum olfactomedin 4 (GW112, hGC-1) in combination with Reg IV is a highly sensitive biomarker for gastric cancer patients. International Journal of Cancer, 125(10), 2383–2392.CrossRef
88.
go back to reference Liu, W., Zhu, J., Cao, L., & Rodgers, G. P. (2007). Expression of hGC-1 is correlated with differentiation of gastric carcinoma. Histopathology, 51(2), 157–165.PubMedCrossRef Liu, W., Zhu, J., Cao, L., & Rodgers, G. P. (2007). Expression of hGC-1 is correlated with differentiation of gastric carcinoma. Histopathology, 51(2), 157–165.PubMedCrossRef
89.
go back to reference Duband, J. L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G. M., & Thiery, J. P. (1987). Adhesion molecules during somitogenesis in the avian embryo. The Journal of Cell Biology, 104(5), 1361–1374.PubMedCrossRef Duband, J. L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G. M., & Thiery, J. P. (1987). Adhesion molecules during somitogenesis in the avian embryo. The Journal of Cell Biology, 104(5), 1361–1374.PubMedCrossRef
90.
go back to reference Nelson, W. J. (2008). Regulation of cell–cell adhesion by the cadherin–catenin complex. Biochemical Society Transactions, 36(Pt 2), 149–155.PubMedCrossRef Nelson, W. J. (2008). Regulation of cell–cell adhesion by the cadherin–catenin complex. Biochemical Society Transactions, 36(Pt 2), 149–155.PubMedCrossRef
91.
go back to reference Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251(5000), 1451–1455.PubMedCrossRef Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251(5000), 1451–1455.PubMedCrossRef
92.
go back to reference Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Current Opinion in Cell Biology, 7(5), 619–627.PubMedCrossRef Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Current Opinion in Cell Biology, 7(5), 619–627.PubMedCrossRef
93.
go back to reference Makrilia, N., Kollias, A., Manolopoulos, L., & Syrigos, K. (2009). Cell adhesion molecules: role and clinical significance in cancer. Cancer Investigation, 27(10), 1023–1037.PubMedCrossRef Makrilia, N., Kollias, A., Manolopoulos, L., & Syrigos, K. (2009). Cell adhesion molecules: role and clinical significance in cancer. Cancer Investigation, 27(10), 1023–1037.PubMedCrossRef
94.
go back to reference Paschos, K. A., Canovas, D., & Bird, N. C. (2009). The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cellular Signalling, 21(5), 665–674.PubMedCrossRef Paschos, K. A., Canovas, D., & Bird, N. C. (2009). The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cellular Signalling, 21(5), 665–674.PubMedCrossRef
95.
go back to reference Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMS in cancer. Nature Reviews. Cancer, 4(2), 118–132.PubMed Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMS in cancer. Nature Reviews. Cancer, 4(2), 118–132.PubMed
96.
go back to reference Angell, J. E., Lindner, D. J., Shapiro, P. S., Hofmann, E. R., & Kalvakolanu, D. V. (2000). Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. The Journal of Biological Chemistry, 275(43), 33416–33426.PubMedCrossRef Angell, J. E., Lindner, D. J., Shapiro, P. S., Hofmann, E. R., & Kalvakolanu, D. V. (2000). Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. The Journal of Biological Chemistry, 275(43), 33416–33426.PubMedCrossRef
97.
go back to reference Chidambaram, N. V., Angell, J. E., Ling, W., Hofmann, E. R., & Kalvakolanu, D. V. (2000). Chromosomal localization of human GRIM-19, a novel IFN-beta and retinoic acid-activated regulator of cell death. Journal of Interferon & Cytokine Research, 20(7), 661–665.CrossRef Chidambaram, N. V., Angell, J. E., Ling, W., Hofmann, E. R., & Kalvakolanu, D. V. (2000). Chromosomal localization of human GRIM-19, a novel IFN-beta and retinoic acid-activated regulator of cell death. Journal of Interferon & Cytokine Research, 20(7), 661–665.CrossRef
98.
go back to reference Fearnley, I. M., Carroll, J., Shannon, R. J., Runswick, M. J., Walker, J. E., & Hirst, J. (2001). GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). The Journal of Biological Chemistry, 276(42), 38345–38348.PubMedCrossRef Fearnley, I. M., Carroll, J., Shannon, R. J., Runswick, M. J., Walker, J. E., & Hirst, J. (2001). GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). The Journal of Biological Chemistry, 276(42), 38345–38348.PubMedCrossRef
99.
go back to reference Lufei, C., Ma, J., Huang, G., Zhang, T., Novotny-Diermayr, V., Ong, C. T., et al. (2003). GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. The EMBO Journal, 22(6), 1325–1335.PubMedCrossRef Lufei, C., Ma, J., Huang, G., Zhang, T., Novotny-Diermayr, V., Ong, C. T., et al. (2003). GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. The EMBO Journal, 22(6), 1325–1335.PubMedCrossRef
100.
go back to reference Seo, T., Lee, D., Shim, Y. S., Angell, J. E., Chidambaram, N. V., Kalvakolanu, D. V., et al. (2002). Viral interferon regulatory factor 1 of Kaposi’s sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. Journal of Virology, 76(17), 8797–8807.PubMedCrossRef Seo, T., Lee, D., Shim, Y. S., Angell, J. E., Chidambaram, N. V., Kalvakolanu, D. V., et al. (2002). Viral interferon regulatory factor 1 of Kaposi’s sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. Journal of Virology, 76(17), 8797–8807.PubMedCrossRef
101.
go back to reference Liu, X., Kim, C. N., Yang, J., Jemmerson, R., & Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86(1), 147–157.PubMedCrossRef Liu, X., Kim, C. N., Yang, J., Jemmerson, R., & Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86(1), 147–157.PubMedCrossRef
102.
go back to reference Luo, X., Budihardjo, I., Zou, H., Slaughter, C., & Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 94(4), 481–490.PubMedCrossRef Luo, X., Budihardjo, I., Zou, H., Slaughter, C., & Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 94(4), 481–490.PubMedCrossRef
103.
go back to reference Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., et al. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275(5303), 1129–1132.PubMedCrossRef Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., et al. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275(5303), 1129–1132.PubMedCrossRef
104.
go back to reference Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., et al. (1999). Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature, 400(6747), 886–891.PubMedCrossRef Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., et al. (1999). Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature, 400(6747), 886–891.PubMedCrossRef
105.
go back to reference Maytin, E. V., Ubeda, M., Lin, J. C., & Habener, J. F. (2001). Stress-inducible transcription factor CHOP/GADD153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Experimental Cell Research, 267(2), 193–204.PubMedCrossRef Maytin, E. V., Ubeda, M., Lin, J. C., & Habener, J. F. (2001). Stress-inducible transcription factor CHOP/GADD153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Experimental Cell Research, 267(2), 193–204.PubMedCrossRef
106.
go back to reference Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature, 389(6648), 300–305.PubMedCrossRef Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature, 389(6648), 300–305.PubMedCrossRef
107.
go back to reference Sun, X., Majumder, P., Shioya, H., Wu, F., Kumar, S., Weichselbaum, R., et al. (2000). Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. The Journal of Biological Chemistry, 275(23), 17237–17240.PubMedCrossRef Sun, X., Majumder, P., Shioya, H., Wu, F., Kumar, S., Weichselbaum, R., et al. (2000). Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. The Journal of Biological Chemistry, 275(23), 17237–17240.PubMedCrossRef
108.
go back to reference Kobayashi, D., Koshida, S., Moriai, R., Tsuji, N., & Watanabe, N. (2007). Olfactomedin 4 promotes s-phase transition in proliferation of pancreatic cancer cells. Cancer Science, 98(3), 334–340.PubMedCrossRef Kobayashi, D., Koshida, S., Moriai, R., Tsuji, N., & Watanabe, N. (2007). Olfactomedin 4 promotes s-phase transition in proliferation of pancreatic cancer cells. Cancer Science, 98(3), 334–340.PubMedCrossRef
109.
go back to reference Koshida, S., Kobayashi, D., Moriai, R., Tsuji, N., & Watanabe, N. (2007). Specific overexpression of OLFM4(GW112/hGC-1) mrna in colon, breast and lung cancer tissues detected using quantitative analysis. Cancer Science, 98(3), 315–320.PubMedCrossRef Koshida, S., Kobayashi, D., Moriai, R., Tsuji, N., & Watanabe, N. (2007). Specific overexpression of OLFM4(GW112/hGC-1) mrna in colon, breast and lung cancer tissues detected using quantitative analysis. Cancer Science, 98(3), 315–320.PubMedCrossRef
110.
go back to reference Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology, 35(2), 71–103.PubMedCrossRef Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology, 35(2), 71–103.PubMedCrossRef
111.
go back to reference Tannock, I. F., & Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. Cancer Research, 49(16), 4373–4384.PubMed Tannock, I. F., & Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. Cancer Research, 49(16), 4373–4384.PubMed
112.
go back to reference Stratford, I. J., Adams, G. E., Bremner, J. C., Cole, S., Edwards, H. S., Robertson, N., et al. (1994). Manipulation and exploitation of the tumour environment for therapeutic benefit. International Journal of Radiation Biology, 65(1), 85–94.PubMedCrossRef Stratford, I. J., Adams, G. E., Bremner, J. C., Cole, S., Edwards, H. S., Robertson, N., et al. (1994). Manipulation and exploitation of the tumour environment for therapeutic benefit. International Journal of Radiation Biology, 65(1), 85–94.PubMedCrossRef
113.
go back to reference Xiao, Z., Xue, J., Sowin, T. J., Rosenberg, S. H., & Zhang, H. (2005). A novel mechanism of checkpoint abrogation conferred by Chk1 downregulation. Oncogene, 24(8), 1403–1411.PubMedCrossRef Xiao, Z., Xue, J., Sowin, T. J., Rosenberg, S. H., & Zhang, H. (2005). A novel mechanism of checkpoint abrogation conferred by Chk1 downregulation. Oncogene, 24(8), 1403–1411.PubMedCrossRef
114.
go back to reference Liang, J., & Slingerland, J. M. (2003). Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle, 2(4), 339–345.PubMed Liang, J., & Slingerland, J. M. (2003). Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle, 2(4), 339–345.PubMed
115.
go back to reference Asanuma, H., Torigoe, T., Kamiguchi, K., Hirohashi, Y., Ohmura, T., Hirata, K., et al. (2005). Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells. Cancer Research, 65(23), 11018–11025.PubMedCrossRef Asanuma, H., Torigoe, T., Kamiguchi, K., Hirohashi, Y., Ohmura, T., Hirata, K., et al. (2005). Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells. Cancer Research, 65(23), 11018–11025.PubMedCrossRef
116.
go back to reference Beltrami, E., Plescia, J., Wilkinson, J. C., Duckett, C. S., & Altieri, D. C. (2004). Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. The Journal of Biological Chemistry, 279(3), 2077–2084.PubMedCrossRef Beltrami, E., Plescia, J., Wilkinson, J. C., Duckett, C. S., & Altieri, D. C. (2004). Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. The Journal of Biological Chemistry, 279(3), 2077–2084.PubMedCrossRef
117.
go back to reference Hu, P., Han, Z., Couvillon, A. D., & Exton, J. H. (2004). Critical role of endogenous Akt/IAPS and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. The Journal of Biological Chemistry, 279(47), 49420–49429.PubMedCrossRef Hu, P., Han, Z., Couvillon, A. D., & Exton, J. H. (2004). Critical role of endogenous Akt/IAPS and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. The Journal of Biological Chemistry, 279(47), 49420–49429.PubMedCrossRef
118.
go back to reference Johnson, N. C., Dan, H. C., Cheng, J. Q., & Kruk, P. A. (2004). BRCA1 185delAG mutation inhibits AKT-dependent, IAP-mediated caspase 3 inactivation in human ovarian surface epithelial cells. Experimental Cell Research, 298(1), 9–16.PubMedCrossRef Johnson, N. C., Dan, H. C., Cheng, J. Q., & Kruk, P. A. (2004). BRCA1 185delAG mutation inhibits AKT-dependent, IAP-mediated caspase 3 inactivation in human ovarian surface epithelial cells. Experimental Cell Research, 298(1), 9–16.PubMedCrossRef
119.
go back to reference Li, F., Ambrosini, G., Chu, E. Y., Plescia, J., Tognin, S., Marchisio, P. C., et al. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 396(6711), 580–584.PubMedCrossRef Li, F., Ambrosini, G., Chu, E. Y., Plescia, J., Tognin, S., Marchisio, P. C., et al. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 396(6711), 580–584.PubMedCrossRef
120.
go back to reference Samuel, T., Okada, K., Hyer, M., Welsh, K., Zapata, J. M., & Reed, J. C. (2005). CIAP1 localizes to the nuclear compartment and modulates the cell cycle. Cancer Research, 65(1), 210–218.PubMed Samuel, T., Okada, K., Hyer, M., Welsh, K., Zapata, J. M., & Reed, J. C. (2005). CIAP1 localizes to the nuclear compartment and modulates the cell cycle. Cancer Research, 65(1), 210–218.PubMed
121.
go back to reference Sommer, K. W., Schamberger, C. J., Schmidt, G. E., Sasgary, S., & Cerni, C. (2003). Inhibitor of apoptosis protein (IAP) survivin is upregulated by oncogenic c-H-Ras. Oncogene, 22(27), 4266–4280.PubMedCrossRef Sommer, K. W., Schamberger, C. J., Schmidt, G. E., Sasgary, S., & Cerni, C. (2003). Inhibitor of apoptosis protein (IAP) survivin is upregulated by oncogenic c-H-Ras. Oncogene, 22(27), 4266–4280.PubMedCrossRef
122.
go back to reference Nakaya, N., Lee, H. S., Takada, Y., Tzchori, I., & Tomarev, S. I. (2008). Zebrafish olfactomedin 1 regulates retinal axon elongation in vivo and is a modulator of Wnt signaling pathway. The Journal of Neuroscience, 28(31), 7900–7910.PubMedCrossRef Nakaya, N., Lee, H. S., Takada, Y., Tzchori, I., & Tomarev, S. I. (2008). Zebrafish olfactomedin 1 regulates retinal axon elongation in vivo and is a modulator of Wnt signaling pathway. The Journal of Neuroscience, 28(31), 7900–7910.PubMedCrossRef
123.
go back to reference Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.PubMedCrossRef Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.PubMedCrossRef
124.
go back to reference van Amerongen, R., & Nusse, R. (2009). Towards an integrated view of Wnt signaling in development. Development, 136(19), 3205–3214.PubMedCrossRef van Amerongen, R., & Nusse, R. (2009). Towards an integrated view of Wnt signaling in development. Development, 136(19), 3205–3214.PubMedCrossRef
125.
go back to reference Mannick, E. E., Schurr, J. R., Zapata, A., Lentz, J. J., Gastanaduy, M., Cote, R. L., et al. (2004). Gene expression in gastric biopsies from patients infected with Helicobacter pylori. Scandinavian Journal of Gastroenterology, 39(12), 1192–1200.PubMedCrossRef Mannick, E. E., Schurr, J. R., Zapata, A., Lentz, J. J., Gastanaduy, M., Cote, R. L., et al. (2004). Gene expression in gastric biopsies from patients infected with Helicobacter pylori. Scandinavian Journal of Gastroenterology, 39(12), 1192–1200.PubMedCrossRef
126.
go back to reference Aung, P. P., Oue, N., Mitani, Y., Nakayama, H., Yoshida, K., Noguchi, T., et al. (2006). Systematic search for gastric cancer-specific genes based on sage data: melanoma inhibitory activity and matrix metalloproteinase-10 are novel prognostic factors in patients with gastric cancer. Oncogene, 25(17), 2546–2557.PubMedCrossRef Aung, P. P., Oue, N., Mitani, Y., Nakayama, H., Yoshida, K., Noguchi, T., et al. (2006). Systematic search for gastric cancer-specific genes based on sage data: melanoma inhibitory activity and matrix metalloproteinase-10 are novel prognostic factors in patients with gastric cancer. Oncogene, 25(17), 2546–2557.PubMedCrossRef
127.
go back to reference Oue, N., Aung, P. P., Mitani, Y., Kuniyasu, H., Nakayama, H., & Yasui, W. (2005). Genes involved in invasion and metastasis of gastric cancer identified by array-based hybridization and serial analysis of gene expression. Oncology, 69(Suppl 1), 17–22.PubMedCrossRef Oue, N., Aung, P. P., Mitani, Y., Kuniyasu, H., Nakayama, H., & Yasui, W. (2005). Genes involved in invasion and metastasis of gastric cancer identified by array-based hybridization and serial analysis of gene expression. Oncology, 69(Suppl 1), 17–22.PubMedCrossRef
128.
go back to reference Yasui, W., Oue, N., Aung, P. P., Matsumura, S., Shutoh, M., & Nakayama, H. (2005). Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer, 8(2), 86–94.PubMedCrossRef Yasui, W., Oue, N., Aung, P. P., Matsumura, S., Shutoh, M., & Nakayama, H. (2005). Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer, 8(2), 86–94.PubMedCrossRef
129.
go back to reference Grutzmann, R., Pilarsky, C., Staub, E., Schmitt, A. O., Foerder, M., Specht, T., et al. (2003). Systematic isolation of genes differentially expressed in normal and cancerous tissue of the pancreas. Pancreatology, 3(2), 169–178.PubMedCrossRef Grutzmann, R., Pilarsky, C., Staub, E., Schmitt, A. O., Foerder, M., Specht, T., et al. (2003). Systematic isolation of genes differentially expressed in normal and cancerous tissue of the pancreas. Pancreatology, 3(2), 169–178.PubMedCrossRef
130.
go back to reference Wentzensen, N., Wilz, B., Findeisen, P., Wagner, R., Dippold, W., von Knebel Doeberitz, M., et al. (2004). Identification of differentially expressed genes in colorectal adenoma compared to normal tissue by suppression subtractive hybridization. International Journal of Oncology, 24(4), 987–994.PubMed Wentzensen, N., Wilz, B., Findeisen, P., Wagner, R., Dippold, W., von Knebel Doeberitz, M., et al. (2004). Identification of differentially expressed genes in colorectal adenoma compared to normal tissue by suppression subtractive hybridization. International Journal of Oncology, 24(4), 987–994.PubMed
131.
go back to reference Li, S. R., Dorudi, S., & Bustin, S. A. (2003). Identification of differentially expressed genes associated with colorectal cancer liver metastasis. European Surgical Research, 35(4), 327–336.PubMedCrossRef Li, S. R., Dorudi, S., & Bustin, S. A. (2003). Identification of differentially expressed genes associated with colorectal cancer liver metastasis. European Surgical Research, 35(4), 327–336.PubMedCrossRef
132.
go back to reference Barker, N., & Clevers, H. (2007). Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology, 133(6), 1755–1760.PubMedCrossRef Barker, N., & Clevers, H. (2007). Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology, 133(6), 1755–1760.PubMedCrossRef
133.
go back to reference Barker, N., van Es, J. H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007.PubMedCrossRef Barker, N., van Es, J. H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007.PubMedCrossRef
134.
go back to reference Barker, N., van de Wetering, M., & Clevers, H. (2008). The intestinal stem cell. Genes & Development, 22(14), 1856–1864.CrossRef Barker, N., van de Wetering, M., & Clevers, H. (2008). The intestinal stem cell. Genes & Development, 22(14), 1856–1864.CrossRef
135.
go back to reference Potten, C. S. (1977). Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature, 269(5628), 518–521.PubMedCrossRef Potten, C. S. (1977). Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature, 269(5628), 518–521.PubMedCrossRef
136.
go back to reference Potten, C. S., Kovacs, L., & Hamilton, E. (1974). Continuous labelling studies on mouse skin and intestine. Cell and Tissue Kinetics, 7(3), 271–283.PubMed Potten, C. S., Kovacs, L., & Hamilton, E. (1974). Continuous labelling studies on mouse skin and intestine. Cell and Tissue Kinetics, 7(3), 271–283.PubMed
137.
go back to reference Sangiorgi, E., & Capecchi, M. R. (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nature Genetics, 40(7), 915–920.PubMedCrossRef Sangiorgi, E., & Capecchi, M. R. (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nature Genetics, 40(7), 915–920.PubMedCrossRef
138.
go back to reference Kosinski, C., Li, V. S., Chan, A. S., Zhang, J., Ho, C., Tsui, W. Y., et al. (2007). Gene expression patterns of human colon tops and basal crypts and bmp antagonists as intestinal stem cell niche factors. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15418–15423.PubMedCrossRef Kosinski, C., Li, V. S., Chan, A. S., Zhang, J., Ho, C., Tsui, W. Y., et al. (2007). Gene expression patterns of human colon tops and basal crypts and bmp antagonists as intestinal stem cell niche factors. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15418–15423.PubMedCrossRef
139.
go back to reference Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.PubMedCrossRef Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.PubMedCrossRef
140.
go back to reference O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMedCrossRef O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMedCrossRef
141.
go back to reference Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.PubMedCrossRef Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.PubMedCrossRef
142.
go back to reference Vermeulen, L., Todaro, M., de Sousa Mello, F., Sprick, M. R., Kemper, K., Perez Alea, M., et al. (2008). Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13427–13432.PubMedCrossRef Vermeulen, L., Todaro, M., de Sousa Mello, F., Sprick, M. R., Kemper, K., Perez Alea, M., et al. (2008). Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13427–13432.PubMedCrossRef
Metadata
Title
Stem cell marker olfactomedin 4: critical appraisal of its characteristics and role in tumorigenesis
Authors
Phulwinder K. Grover
Jennifer E. Hardingham
Adrian G. Cummins
Publication date
01-12-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9262-z

Other articles of this Issue 4/2010

Cancer and Metastasis Reviews 4/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine