Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2014

Open Access 01-12-2014 | Review

Stem cell delivery of therapies for brain disorders

Authors: Alexander Aleynik, Kevin M Gernavage, Yasmine SH Mourad, Lauren S Sherman, Katherine Liu, Yuriy A Gubenko, Pranela Rameshwar

Published in: Clinical and Translational Medicine | Issue 1/2014

Login to get access

Abstract

The blood brain barrier (BBB) poses a problem to deliver drugs for brain malignancies and neurodegenerative disorders. Stem cells such as neural stem cells (NSCs) and mesenchymal stem cells (MSCs) can be used to delivery drugs or RNA to the brain. This use of methods to bypass the hurdles of delivering drugs across the BBB is particularly important for diseases with poor prognosis such as glioblastoma multiforme (GBM). Stem cell treatment to deliver drugs to neural tumors is currently in clinical trial. This method, albeit in the early phase, could be an advantage because stem cells can cross the BBB into the brain. MSCs are particularly interesting because to date, the experimental and clinical evidence showed ‘no alarm signal’ with regards to safety. Additionally, MSCs do not form tumors as other more primitive stem cells such as embryonic stem cells. More importantly, MSCs showed pathotropism by migrating to sites of tissue insult. Due to the ability of MSCs to be transplanted across allogeneic barrier, drug-engineered MSCs can be available as off-the-shelf cells for rapid transplantation. This review discusses the advantages and disadvantages of stem cells to deliver prodrugs, genes and RNA to treat neural disorders.
Appendix
Available only for authorised users
Literature
2.
go back to reference Glenner GG: Reprint of Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 2012, 425: 534–539.CrossRefPubMed Glenner GG: Reprint of Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 2012, 425: 534–539.CrossRefPubMed
3.
go back to reference Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT: Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997, 41: 17–24.CrossRefPubMed Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT: Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997, 41: 17–24.CrossRefPubMed
4.
go back to reference Yankner BA, Duffy LK, Kirschner DA: Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 1990, 250: 279–282.CrossRefPubMed Yankner BA, Duffy LK, Kirschner DA: Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 1990, 250: 279–282.CrossRefPubMed
5.
go back to reference Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O: Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998, 18: 106–108.CrossRefPubMed Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O: Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998, 18: 106–108.CrossRefPubMed
6.
go back to reference Zhu C, Gao J, Karlsson N, Li Q, Zhang Y, Huang Z, Li H, Kuhn HG, Blomgren K: Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents. J Cereb Blood Flow Metab 2010, 30: 1017–1030.PubMedCentralCrossRefPubMed Zhu C, Gao J, Karlsson N, Li Q, Zhang Y, Huang Z, Li H, Kuhn HG, Blomgren K: Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents. J Cereb Blood Flow Metab 2010, 30: 1017–1030.PubMedCentralCrossRefPubMed
7.
go back to reference Pardridge WM: Molecular Trojan horses for blood–brain barrier drug delivery. Discov Med 2006, 6: 139–143.PubMed Pardridge WM: Molecular Trojan horses for blood–brain barrier drug delivery. Discov Med 2006, 6: 139–143.PubMed
9.
go back to reference Larrue V, von Kummer R, Muller A, Bluhmki E: Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke 2001, 32: 438–441.CrossRefPubMed Larrue V, von Kummer R, Muller A, Bluhmki E: Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke 2001, 32: 438–441.CrossRefPubMed
10.
go back to reference Bagiella E, Novack TA, Ansel B, Diaz-Arrastia R, Dikmen S, Hart T, Temkin N: Measuring outcome in traumatic brain injury treatment trials: recommendations from the traumatic brain injury clinical trials network. J Head Trauma Rehabil 2010, 25: 375–382.PubMedCentralCrossRefPubMed Bagiella E, Novack TA, Ansel B, Diaz-Arrastia R, Dikmen S, Hart T, Temkin N: Measuring outcome in traumatic brain injury treatment trials: recommendations from the traumatic brain injury clinical trials network. J Head Trauma Rehabil 2010, 25: 375–382.PubMedCentralCrossRefPubMed
11.
go back to reference Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S: New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 2008, 59: 201–220.CrossRefPubMed Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S: New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 2008, 59: 201–220.CrossRefPubMed
12.
go back to reference Aliaga E, Silhol M, Bonneau N, Maurice T, Arancibia S, Tapia-Arancibia L: Dual response of BDNF to sublethal concentrations of beta-amyloid peptides in cultured cortical neurons. Neurobiol Dis 2010, 37: 208–217.CrossRefPubMed Aliaga E, Silhol M, Bonneau N, Maurice T, Arancibia S, Tapia-Arancibia L: Dual response of BDNF to sublethal concentrations of beta-amyloid peptides in cultured cortical neurons. Neurobiol Dis 2010, 37: 208–217.CrossRefPubMed
13.
go back to reference Larsen JM, Martin DR, Byrne ME: Recent advances in delivery through the blood–brain barrier. Curr Top Med Chem 2014, 14: 1148–1160.CrossRefPubMed Larsen JM, Martin DR, Byrne ME: Recent advances in delivery through the blood–brain barrier. Curr Top Med Chem 2014, 14: 1148–1160.CrossRefPubMed
14.
go back to reference Hayek SM, Deer TR, Pope JE, Panchal SJ, Patel VB: Intrathecal therapy for cancer and non-cancer pain. Pain Physician 2011, 14: 219–248.PubMed Hayek SM, Deer TR, Pope JE, Panchal SJ, Patel VB: Intrathecal therapy for cancer and non-cancer pain. Pain Physician 2011, 14: 219–248.PubMed
15.
go back to reference Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K: Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Intl J Cancer 2007, 121: 901–907.CrossRef Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K: Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Intl J Cancer 2007, 121: 901–907.CrossRef
16.
go back to reference Liu HL, Fan CH, Ting CY, Yeh CK: Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 2014, 4: 432–444.PubMedCentralCrossRefPubMed Liu HL, Fan CH, Ting CY, Yeh CK: Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 2014, 4: 432–444.PubMedCentralCrossRefPubMed
17.
go back to reference Wang F, Cheng Y, Mei J, Song Y, Yang Y, Liu Y, Wang Z: Focused ultrasound microbubble destruction-mediated changes in blood–brain barrier permeability assessed by contrast-enhanced magnetic resonance imaging. J Ultrasound Med 2009, 28: 1501–1509.PubMed Wang F, Cheng Y, Mei J, Song Y, Yang Y, Liu Y, Wang Z: Focused ultrasound microbubble destruction-mediated changes in blood–brain barrier permeability assessed by contrast-enhanced magnetic resonance imaging. J Ultrasound Med 2009, 28: 1501–1509.PubMed
18.
go back to reference Xie F, Boska MD, Lof J, Uberti MG, Tsutsui JM, Porter TR: Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Ultrasound Med & Biol 2008, 34: 2028.CrossRef Xie F, Boska MD, Lof J, Uberti MG, Tsutsui JM, Porter TR: Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Ultrasound Med & Biol 2008, 34: 2028.CrossRef
19.
go back to reference Egleton R, Davis T: Development of neuropeptide drugs that cross the blood–brain barrier. Neurotherapeutics 2005, 2: 44–53.CrossRef Egleton R, Davis T: Development of neuropeptide drugs that cross the blood–brain barrier. Neurotherapeutics 2005, 2: 44–53.CrossRef
20.
go back to reference Abbruscato TJ, Thomas SA, Hruby VJ, Davis TP: Brain and spinal cord distribution of Biphalin: correlation with opioid receptor density and mechanism of CNS entry. J Neurochem 1997, 69: 1236–1245.CrossRefPubMed Abbruscato TJ, Thomas SA, Hruby VJ, Davis TP: Brain and spinal cord distribution of Biphalin: correlation with opioid receptor density and mechanism of CNS entry. J Neurochem 1997, 69: 1236–1245.CrossRefPubMed
21.
go back to reference Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF: Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 2009, 23: 35–58.CrossRefPubMed Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF: Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 2009, 23: 35–58.CrossRefPubMed
22.
go back to reference Scherrmann JM: Drug delivery to brain via the blood–brain barrier. Vas Pharmacol 2002, 38: 349–354.CrossRef Scherrmann JM: Drug delivery to brain via the blood–brain barrier. Vas Pharmacol 2002, 38: 349–354.CrossRef
23.
go back to reference Tucker IG: Drug delivery to the brain via the blood–brain barrier: a review of the literature and some recent patent disclosures. Ther Deliv 2011, 2: 311–327.CrossRefPubMed Tucker IG: Drug delivery to the brain via the blood–brain barrier: a review of the literature and some recent patent disclosures. Ther Deliv 2011, 2: 311–327.CrossRefPubMed
24.
go back to reference Pardridge WM, Boado RJ: Reengineering biopharmaceuticals for targeted delivery across the blood–brain barrier. In Methods in Enzymology, Protein Engineering for Therapeutics, Part B, Volume 503. Edited by: Gregory KDW. Academic Press (Elsevier Inc); 2012:269–292.CrossRef Pardridge WM, Boado RJ: Reengineering biopharmaceuticals for targeted delivery across the blood–brain barrier. In Methods in Enzymology, Protein Engineering for Therapeutics, Part B, Volume 503. Edited by: Gregory KDW. Academic Press (Elsevier Inc); 2012:269–292.CrossRef
25.
go back to reference Tobias A, Ahmed A, Moon KS, Lesniak MS: The art of gene therapy for glioma: a review of the challenging road to the bedside. J Neurol Neurosurg Psychiatry 2013, 84: 213–222.PubMedCentralCrossRefPubMed Tobias A, Ahmed A, Moon KS, Lesniak MS: The art of gene therapy for glioma: a review of the challenging road to the bedside. J Neurol Neurosurg Psychiatry 2013, 84: 213–222.PubMedCentralCrossRefPubMed
26.
go back to reference Juratli TA, Schackert G, Krex D: Current status of local therapy in malignant gliomas- a clinical review of three selected approaches. Pharmacol Therap 2013, 139: 341–358.CrossRef Juratli TA, Schackert G, Krex D: Current status of local therapy in malignant gliomas- a clinical review of three selected approaches. Pharmacol Therap 2013, 139: 341–358.CrossRef
27.
go back to reference Bhujbal SV, de Vos P, Niclou SP: Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev 2014, 67–68: 142–153.CrossRefPubMed Bhujbal SV, de Vos P, Niclou SP: Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev 2014, 67–68: 142–153.CrossRefPubMed
28.
go back to reference Gabathuler R: Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 2010, 37: 48–57.CrossRefPubMed Gabathuler R: Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 2010, 37: 48–57.CrossRefPubMed
29.
30.
go back to reference Salahuddin TS, Johansson BB, Kalimo H, Olsson Y: Structural changes in the rat brain after carotid infusions of hyperosmolar solutions: a light microscopic and immunohistochemical study. Neuropathol Appl Neurobiol 1988, 14: 467–482.CrossRefPubMed Salahuddin TS, Johansson BB, Kalimo H, Olsson Y: Structural changes in the rat brain after carotid infusions of hyperosmolar solutions: a light microscopic and immunohistochemical study. Neuropathol Appl Neurobiol 1988, 14: 467–482.CrossRefPubMed
31.
go back to reference Boado RJ, Pardridge WM: The Trojan horse liposome technology for nonviral gene transfer across the blood–brain barrier. J Drug Deliv 2011, 2011: 296151.PubMedCentralCrossRefPubMed Boado RJ, Pardridge WM: The Trojan horse liposome technology for nonviral gene transfer across the blood–brain barrier. J Drug Deliv 2011, 2011: 296151.PubMedCentralCrossRefPubMed
33.
go back to reference Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M, Fisher J, for the NABTT CNS Consortium: Survival of patients with newly diagnosed Glioblastoma treated with radiation and Temozolomide in research studies in the United States. Clin Cancer Res 2010, 16: 2443–2449.PubMedCentralCrossRefPubMed Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M, Fisher J, for the NABTT CNS Consortium: Survival of patients with newly diagnosed Glioblastoma treated with radiation and Temozolomide in research studies in the United States. Clin Cancer Res 2010, 16: 2443–2449.PubMedCentralCrossRefPubMed
35.
go back to reference Osaka M, Honmou O, Murakami T, Nonaka T, Houkin K, Hamada H, Kocsis JD: Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res 2010, 1343: 226–235.CrossRefPubMed Osaka M, Honmou O, Murakami T, Nonaka T, Houkin K, Hamada H, Kocsis JD: Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res 2010, 1343: 226–235.CrossRefPubMed
36.
go back to reference Akiyama Y, Radtke C, Honmou O, Kocsis JD: Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 2002, 39: 229–236.PubMedCentralCrossRefPubMed Akiyama Y, Radtke C, Honmou O, Kocsis JD: Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 2002, 39: 229–236.PubMedCentralCrossRefPubMed
37.
38.
39.
go back to reference Liu L, Eckert MA, Riazifar H, Kang DK, Agalliu D, Zhao W: From blood to the brain: can systemically transplanted mesenchymal stem cells cross the blood–brain barrier? Stem Cells Int 2013, 2013: 435093.PubMedCentralPubMed Liu L, Eckert MA, Riazifar H, Kang DK, Agalliu D, Zhao W: From blood to the brain: can systemically transplanted mesenchymal stem cells cross the blood–brain barrier? Stem Cells Int 2013, 2013: 435093.PubMedCentralPubMed
40.
go back to reference Bruder SP, Fink DJ, Caplan AI: Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 1994, 56: 283–294.CrossRefPubMed Bruder SP, Fink DJ, Caplan AI: Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 1994, 56: 283–294.CrossRefPubMed
41.
go back to reference Huang B, Tabata Y, Gao JQ: Mesenchymal stem cells as therapeutic agents and potential targeted gene delivery vehicle for brain diseases. J Controlled Release 2012, 162: 464–473.CrossRef Huang B, Tabata Y, Gao JQ: Mesenchymal stem cells as therapeutic agents and potential targeted gene delivery vehicle for brain diseases. J Controlled Release 2012, 162: 464–473.CrossRef
42.
go back to reference Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of Chemokines and Nitric Oxide. Cell Stem Cell 2008, 2: 141–150.CrossRefPubMed Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of Chemokines and Nitric Oxide. Cell Stem Cell 2008, 2: 141–150.CrossRefPubMed
43.
go back to reference da Silva Meirelles L, Caplan AI, Nardi NB: In search of the in vivo identity of Mesenchymal stem cells. Stem Cells 2008, 26: 2287–2299.CrossRefPubMed da Silva Meirelles L, Caplan AI, Nardi NB: In search of the in vivo identity of Mesenchymal stem cells. Stem Cells 2008, 26: 2287–2299.CrossRefPubMed
44.
go back to reference Yilmaz G, Vital S, Yilmaz CE, Stokes KY, Alexander JS, Granger DN: Selectin-mediated recruitment of bone marrow stromal cells in the Postischemic Cerebral Microvasculature. Stroke 2011, 42: 806–811.PubMedCentralCrossRefPubMed Yilmaz G, Vital S, Yilmaz CE, Stokes KY, Alexander JS, Granger DN: Selectin-mediated recruitment of bone marrow stromal cells in the Postischemic Cerebral Microvasculature. Stroke 2011, 42: 806–811.PubMedCentralCrossRefPubMed
45.
go back to reference Duebgen M, Martinez-Quintanilla J, Tamura K, Hingtgen S, Redjal N, Wakimoto H, Shah K: Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J Natl Cancer Inst 2014, 106: dju090.CrossRefPubMed Duebgen M, Martinez-Quintanilla J, Tamura K, Hingtgen S, Redjal N, Wakimoto H, Shah K: Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J Natl Cancer Inst 2014, 106: dju090.CrossRefPubMed
46.
go back to reference Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P: Delivery of functional anti-miR-9 by Mesenchymal Stem Cell-derived Exosomes to Glioblastoma Multiforme Cells Conferred Chemosensitivity. Mol Ther Nucleic Acids 2013, 2: e126.PubMedCentralCrossRefPubMed Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P: Delivery of functional anti-miR-9 by Mesenchymal Stem Cell-derived Exosomes to Glioblastoma Multiforme Cells Conferred Chemosensitivity. Mol Ther Nucleic Acids 2013, 2: e126.PubMedCentralCrossRefPubMed
47.
go back to reference Xiong W, Candolfi M, Liu C, Muhammad AKMG, Yagiz K, Puntel M, Moore PF, Avalos J, Young JD, Khan D, Donelson R, Pluhar GE, Ohlfest JR, Wawrowsky K, Lowenstein PR, Castro MG: Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a Dog Glioma clinical trial. PLoS ONE 2010, 5: e11074.PubMedCentralCrossRefPubMed Xiong W, Candolfi M, Liu C, Muhammad AKMG, Yagiz K, Puntel M, Moore PF, Avalos J, Young JD, Khan D, Donelson R, Pluhar GE, Ohlfest JR, Wawrowsky K, Lowenstein PR, Castro MG: Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a Dog Glioma clinical trial. PLoS ONE 2010, 5: e11074.PubMedCentralCrossRefPubMed
48.
go back to reference Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A: Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005, 106: 1755–1761.CrossRefPubMed Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A: Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005, 106: 1755–1761.CrossRefPubMed
49.
go back to reference Uccelli A, Milanese M, Principato MC, Morando S, Bonifacino T, Vergani L, Giunti D, Voci A, Carminati E, Giribaldi F, Caponnetto C, Bonanno G: Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol Med 2012, 18: 794–804.PubMedCentralCrossRefPubMed Uccelli A, Milanese M, Principato MC, Morando S, Bonifacino T, Vergani L, Giunti D, Voci A, Carminati E, Giribaldi F, Caponnetto C, Bonanno G: Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol Med 2012, 18: 794–804.PubMedCentralCrossRefPubMed
50.
go back to reference Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, Sandstrom MI, Skeel RL, Lescaudron L, Dunbar GL: Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 2010, 214: 193–200.CrossRefPubMed Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, Sandstrom MI, Skeel RL, Lescaudron L, Dunbar GL: Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 2010, 214: 193–200.CrossRefPubMed
51.
go back to reference Choi SA, Lee JY, Wang KC, Phi JH, Song SH, Song J, Kim SK: Human adipose tissue-derived mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur J Cancer 2014, 48: 129–137.CrossRef Choi SA, Lee JY, Wang KC, Phi JH, Song SH, Song J, Kim SK: Human adipose tissue-derived mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur J Cancer 2014, 48: 129–137.CrossRef
52.
go back to reference Altanerova V, Cihova M, Babic M, Rychly B, Ondicova K, Mravec B, Altaner C: Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Intl J Cancer 2012, 130: 2455–2463.CrossRef Altanerova V, Cihova M, Babic M, Rychly B, Ondicova K, Mravec B, Altaner C: Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Intl J Cancer 2012, 130: 2455–2463.CrossRef
53.
go back to reference Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang C, Bobbitt K, Rempel S, Hasselbach L, Mikkelsen T, Slavin S, Brodie C: Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 2013, 4: 346–361.PubMedCentralCrossRefPubMed Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang C, Bobbitt K, Rempel S, Hasselbach L, Mikkelsen T, Slavin S, Brodie C: Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 2013, 4: 346–361.PubMedCentralCrossRefPubMed
54.
go back to reference Cristofanilli M, Harris VK, Zigelbaum A, Goossens AM, Lu A, Rosenthal H, Sadiq SA: Mesenchymal stem cells enhance the engraftment and myelinating ability of allogeneic oligodendrocyte progenitors in dysmyelinated mice. Stem Cells Dev 2011, 20: 2065–2076.CrossRefPubMed Cristofanilli M, Harris VK, Zigelbaum A, Goossens AM, Lu A, Rosenthal H, Sadiq SA: Mesenchymal stem cells enhance the engraftment and myelinating ability of allogeneic oligodendrocyte progenitors in dysmyelinated mice. Stem Cells Dev 2011, 20: 2065–2076.CrossRefPubMed
55.
go back to reference Ryu CH, Park KY, Hou Y, Jeong CH, Kim SM, Jeun SS: Gene therapy of multiple sclerosis using interferon beta-secreting human bone marrow mesenchymal stem cells. Biomed Res Int 2013, 2013: 696738.PubMedCentralCrossRefPubMed Ryu CH, Park KY, Hou Y, Jeong CH, Kim SM, Jeun SS: Gene therapy of multiple sclerosis using interferon beta-secreting human bone marrow mesenchymal stem cells. Biomed Res Int 2013, 2013: 696738.PubMedCentralCrossRefPubMed
57.
go back to reference Horn AP, Bernardi A, Luiz FR, Grudzinski PB, Hoppe JB, de Souza LF, Chagastelles P, de Souza Wyse AT, Bernard EA, Battastini AM, Campos NN, Lenz G, Nardi NB, Salbego C: Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus. Stem Cells Dev 2011, 20: 1171–1181.CrossRefPubMed Horn AP, Bernardi A, Luiz FR, Grudzinski PB, Hoppe JB, de Souza LF, Chagastelles P, de Souza Wyse AT, Bernard EA, Battastini AM, Campos NN, Lenz G, Nardi NB, Salbego C: Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus. Stem Cells Dev 2011, 20: 1171–1181.CrossRefPubMed
58.
go back to reference Greco SJ, Rameshwar P: Mesenchymal stem cells in drug/gene delivery: implications for cell therapy. Ther Deliv 2012, 3: 997–1004.CrossRefPubMed Greco SJ, Rameshwar P: Mesenchymal stem cells in drug/gene delivery: implications for cell therapy. Ther Deliv 2012, 3: 997–1004.CrossRefPubMed
59.
go back to reference Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P: Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis 2014, 5: e1145.PubMedCentralCrossRefPubMed Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P: Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis 2014, 5: e1145.PubMedCentralCrossRefPubMed
60.
go back to reference Natasha G, Gundogan B, Tan A, Farhatnia Y, Wu W, Rajadas J, Seifalian AM: Exosomes as Immunotheranostic Nanoparticles. Clin Ther 2014, 36: 820–829.CrossRefPubMed Natasha G, Gundogan B, Tan A, Farhatnia Y, Wu W, Rajadas J, Seifalian AM: Exosomes as Immunotheranostic Nanoparticles. Clin Ther 2014, 36: 820–829.CrossRefPubMed
62.
go back to reference Faur J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R: Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 2006, 31: 642–648.CrossRef Faur J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R: Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 2006, 31: 642–648.CrossRef
63.
go back to reference Street J, Barran P, Mackay CL, Weidt S, Balmforth C, Walsh T, Chalmers R, Webb D, Dear J: Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med 2012, 10: 5.PubMedCentralCrossRefPubMed Street J, Barran P, Mackay CL, Weidt S, Balmforth C, Walsh T, Chalmers R, Webb D, Dear J: Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med 2012, 10: 5.PubMedCentralCrossRefPubMed
64.
go back to reference Ansar M, Serrano D, Papademetriou I, Bhowmick TK, Muro S: Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting. ACS Nano 2013, 7: 10597–10611.PubMedCentralCrossRefPubMed Ansar M, Serrano D, Papademetriou I, Bhowmick TK, Muro S: Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting. ACS Nano 2013, 7: 10597–10611.PubMedCentralCrossRefPubMed
65.
go back to reference van Niel G, Porto-Carreiro I, Simoes S, Raposo G: Exosomes: a common pathway for a specialized function. J Biochem 2006, 140: 13–21.CrossRefPubMed van Niel G, Porto-Carreiro I, Simoes S, Raposo G: Exosomes: a common pathway for a specialized function. J Biochem 2006, 140: 13–21.CrossRefPubMed
66.
go back to reference Kobayashi T, Beuchat MH, Chevallier J, Makino A, Mayran N, Escola JM, Lebrand C, Cosson P, Kobayashi T, Gruenberg J: Separation and characterization of late endosomal membrane domains. J Biol Chem 2002, 277: 32157–32164.CrossRefPubMed Kobayashi T, Beuchat MH, Chevallier J, Makino A, Mayran N, Escola JM, Lebrand C, Cosson P, Kobayashi T, Gruenberg J: Separation and characterization of late endosomal membrane domains. J Biol Chem 2002, 277: 32157–32164.CrossRefPubMed
68.
go back to reference Helms JB, Zurzolo C: Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 2004, 5: 247–254.CrossRefPubMed Helms JB, Zurzolo C: Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 2004, 5: 247–254.CrossRefPubMed
69.
go back to reference Gregory LA, Ricart RA, Patel SA, Lim PK, Rameshwar P: MicroRNAs, Gap junctional intercellular communication and Mesenchymal stem cells in breast cancer metastasis. Curr Cancer Ther Rev 2011, 7: 176–183.PubMedCentralCrossRefPubMed Gregory LA, Ricart RA, Patel SA, Lim PK, Rameshwar P: MicroRNAs, Gap junctional intercellular communication and Mesenchymal stem cells in breast cancer metastasis. Curr Cancer Ther Rev 2011, 7: 176–183.PubMedCentralCrossRefPubMed
70.
go back to reference Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001, 293: 834–838.CrossRefPubMed Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001, 293: 834–838.CrossRefPubMed
71.
go back to reference Gonzalez-Gomez P, Sanchez P, Mira H: MicroRNAs as regulators of neural stem cell-related pathways in Glioblastoma multiforme. Mol Neurobiol 2011, 44: 235–249.CrossRefPubMed Gonzalez-Gomez P, Sanchez P, Mira H: MicroRNAs as regulators of neural stem cell-related pathways in Glioblastoma multiforme. Mol Neurobiol 2011, 44: 235–249.CrossRefPubMed
73.
go back to reference Huang PH, Xu AM, White FM: Oncogenic EGFR signaling networks in glioma. Sci Signal 2009, 2: re6.PubMed Huang PH, Xu AM, White FM: Oncogenic EGFR signaling networks in glioma. Sci Signal 2009, 2: re6.PubMed
74.
go back to reference Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JHY, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS: Molecular determinants of the response of Glioblastomas to EGFR Kinase inhibitors. New England J Med 2005, 353: 2012–2024.CrossRef Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JHY, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS: Molecular determinants of the response of Glioblastomas to EGFR Kinase inhibitors. New England J Med 2005, 353: 2012–2024.CrossRef
75.
go back to reference Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, Zhang W, Kang C: Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 2010, 90: 144–155.CrossRefPubMed Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, Zhang W, Kang C: Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 2010, 90: 144–155.CrossRefPubMed
76.
go back to reference Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T, Holland EC: The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009, 23: 1327–1337.PubMedCentralCrossRefPubMed Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T, Holland EC: The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009, 23: 1327–1337.PubMedCentralCrossRefPubMed
77.
go back to reference Song L, Huang Q, Chen K, Liu L, Lin C, Dai T, Yu C, Wu Z, Li J: miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK beta. Biochem Biophy Res Commun 2010, 402: 135–140.CrossRef Song L, Huang Q, Chen K, Liu L, Lin C, Dai T, Yu C, Wu Z, Li J: miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK beta. Biochem Biophy Res Commun 2010, 402: 135–140.CrossRef
78.
go back to reference Kefas B, Comeau L, Floyd DH, Seleverstov O, Godlewski J, Schmittgen T, Jiang J, diPierro CG, Li Y, Chiocca EA, Lee J, Fine H, Abounader R, Lawler S, Purow B: The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 2009, 29: 15161–15168.PubMedCentralCrossRefPubMed Kefas B, Comeau L, Floyd DH, Seleverstov O, Godlewski J, Schmittgen T, Jiang J, diPierro CG, Li Y, Chiocca EA, Lee J, Fine H, Abounader R, Lawler S, Purow B: The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 2009, 29: 15161–15168.PubMedCentralCrossRefPubMed
79.
go back to reference Coolen M, Katz S, Bally-Cuif L: miR-9: a versatile regulator of neurogenesis. Frontiers Cell Neurosci 2013, 7: 1–11.CrossRef Coolen M, Katz S, Bally-Cuif L: miR-9: a versatile regulator of neurogenesis. Frontiers Cell Neurosci 2013, 7: 1–11.CrossRef
80.
go back to reference Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ: Regulation of epidermal growth factor receptor signaling in human cancer cells by MicroRNA-7. J Biol Chem 2009, 284: 5731–5741.CrossRefPubMed Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ: Regulation of epidermal growth factor receptor signaling in human cancer cells by MicroRNA-7. J Biol Chem 2009, 284: 5731–5741.CrossRefPubMed
81.
go back to reference Zhang C, Han L, Zhang A, Yang W, Zhou X, Pu P, Du Y, Zeng H, Kang C: Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. Int J Oncol 2010, 36: 1503–1512.PubMed Zhang C, Han L, Zhang A, Yang W, Zhou X, Pu P, Du Y, Zeng H, Kang C: Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. Int J Oncol 2010, 36: 1503–1512.PubMed
82.
go back to reference Silber J, Lim D, Petritsch C, Persson A, Maunakea A, Yu M, Vandenberg S, Ginzinger D, James CD, Costello J, Bergers G, Weiss W, Alvarez-Buylla A, Hodgson JG: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008, 6: 14.PubMedCentralCrossRefPubMed Silber J, Lim D, Petritsch C, Persson A, Maunakea A, Yu M, Vandenberg S, Ginzinger D, James CD, Costello J, Bergers G, Weiss W, Alvarez-Buylla A, Hodgson JG: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008, 6: 14.PubMedCentralCrossRefPubMed
83.
go back to reference Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, RayChaudhury A, Newton HB, Chiocca EA, Lawler S: Targeting of the Bmi-1 oncogene/stem cell renewal factor by MicroRNA-128 inhibits Glioma proliferation and self-renewal. Cancer Res 2008, 68: 9125–9130.CrossRefPubMed Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, RayChaudhury A, Newton HB, Chiocca EA, Lawler S: Targeting of the Bmi-1 oncogene/stem cell renewal factor by MicroRNA-128 inhibits Glioma proliferation and self-renewal. Cancer Res 2008, 68: 9125–9130.CrossRefPubMed
84.
go back to reference Nan Y, Han L, Zhang A, Wang G, Jia Z, Yang Y, Yue X, Pu P, Zhong Y, Kang C: MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res 2010, 1359: 14–21.CrossRefPubMed Nan Y, Han L, Zhang A, Wang G, Jia Z, Yang Y, Yue X, Pu P, Zhong Y, Kang C: MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res 2010, 1359: 14–21.CrossRefPubMed
85.
go back to reference Danks MK, Yoon KJ, Bush RA, Remack JS, Wierdl M, Tsurkan L, Kim SU, Garcia E, Metz MZ, Najbauer J, Potter PM, Aboody KS: Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated Neuroblastoma. Cancer Res 2007, 67: 22–25.CrossRefPubMed Danks MK, Yoon KJ, Bush RA, Remack JS, Wierdl M, Tsurkan L, Kim SU, Garcia E, Metz MZ, Najbauer J, Potter PM, Aboody KS: Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated Neuroblastoma. Cancer Res 2007, 67: 22–25.CrossRefPubMed
86.
go back to reference Kim SU, de Vellis J: Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 2009, 87: 2183–2200.CrossRefPubMed Kim SU, de Vellis J: Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 2009, 87: 2183–2200.CrossRefPubMed
87.
go back to reference Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M: Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 2003, 75: 248–255.CrossRefPubMed Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M: Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 2003, 75: 248–255.CrossRefPubMed
88.
go back to reference Qiao L, Xu Z, Zhao T, Ye L, Zhang X: Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 2008, 269: 67–77.CrossRefPubMed Qiao L, Xu Z, Zhao T, Ye L, Zhang X: Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 2008, 269: 67–77.CrossRefPubMed
89.
go back to reference Ramasamy R, Lam EWF, Soeiro I, Tisato V, Bonnet D, Dazzi F: Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 2006, 21: 304–310.CrossRefPubMed Ramasamy R, Lam EWF, Soeiro I, Tisato V, Bonnet D, Dazzi F: Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 2006, 21: 304–310.CrossRefPubMed
90.
go back to reference van Eekelen M, Sasportas LS, Kasmieh R, Yip S, Figueiredo JL, Louis DN, Weissleder R, Shah K: Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 2010, 29: 3185–3195.PubMedCentralCrossRefPubMed van Eekelen M, Sasportas LS, Kasmieh R, Yip S, Figueiredo JL, Louis DN, Weissleder R, Shah K: Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 2010, 29: 3185–3195.PubMedCentralCrossRefPubMed
91.
go back to reference Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW, Kang SK, Lee YS, Kang KS: Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 2009, 11: 289–298. 1 1CrossRefPubMed Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW, Kang SK, Lee YS, Kang KS: Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 2009, 11: 289–298. 1 1CrossRefPubMed
92.
go back to reference Miletic H, Fischer Y, Litwak S, Giroglou T, Waerzeggers Y, Winkeler A, Li H, Himmelreich U, Lange C, Stenzel W, Deckert M, Neumann H, Jacobs AH, von Laer D: Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 2007, 15: 1373–1381.CrossRefPubMed Miletic H, Fischer Y, Litwak S, Giroglou T, Waerzeggers Y, Winkeler A, Li H, Himmelreich U, Lange C, Stenzel W, Deckert M, Neumann H, Jacobs AH, von Laer D: Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 2007, 15: 1373–1381.CrossRefPubMed
94.
go back to reference Lim JY, Park SI, Kim SM, Jun JA, Oh JH, Ryu CH, Jeong CH, Park SH, Park SA, Oh W, Chang JW, Jeun SS: Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and beta-catenin phosphorylation and following transplantation into the developing brain. Cell Transplant 2011, 20: 1855–1866.CrossRefPubMed Lim JY, Park SI, Kim SM, Jun JA, Oh JH, Ryu CH, Jeong CH, Park SH, Park SA, Oh W, Chang JW, Jeun SS: Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and beta-catenin phosphorylation and following transplantation into the developing brain. Cell Transplant 2011, 20: 1855–1866.CrossRefPubMed
95.
go back to reference Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF: Human bone marrow-derived Mesenchymal stem cells in the treatment of Gliomas. Cancer Res 2005, 65: 3307–3318.PubMed Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF: Human bone marrow-derived Mesenchymal stem cells in the treatment of Gliomas. Cancer Res 2005, 65: 3307–3318.PubMed
96.
go back to reference Rameshwar P: Current thoughts on the therapeutic potential of stem cell. Methods Mol Biol 2012, 879: 3–26.CrossRefPubMed Rameshwar P: Current thoughts on the therapeutic potential of stem cell. Methods Mol Biol 2012, 879: 3–26.CrossRefPubMed
Metadata
Title
Stem cell delivery of therapies for brain disorders
Authors
Alexander Aleynik
Kevin M Gernavage
Yasmine SH Mourad
Lauren S Sherman
Katherine Liu
Yuriy A Gubenko
Pranela Rameshwar
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2014
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/2001-1326-3-24

Other articles of this Issue 1/2014

Clinical and Translational Medicine 1/2014 Go to the issue