Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Statins | Research article

Complex interactions of lovastatin with 10 chemotherapeutic drugs: a rigorous evaluation of synergism and antagonism

Authors: Kaitlyn A. Khandelwal Gilman, Seungmin Han, Young-Wook Won, Charles W. Putnam

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Evidence bearing on the role of statins in the prevention and treatment of cancer is confounded by the diversity of statins, chemotherapeutic agents and cancer types included in the numerous published studies; consequently, the adjunctive value of statins with chemotherapy remains uncertain.

Methods

We assayed lovastatin in combination with each of ten commonly prescribed chemotherapy drugs in highly reproducible in vitro assays, using a neutral cellular substrate, Saccharomyces cerevisiae. Cell density (OD600) data were analyzed for synergism and antagonism using the Loewe additivity model implemented with the Combenefit software.

Results

Four of the ten chemotherapy drugs – tamoxifen, doxorubicin, methotrexate and rapamycin – exhibited net synergism with lovastatin. The remaining six agents (5-fluorouracil, gemcitabine, epothilone, cisplatin, cyclophosphamide and etoposide) compiled neutral or antagonistic scores. Distinctive patterns of synergism and antagonism, often coexisting within the same concentration space, were documented with the various combinations, including those with net synergism scores. Two drug pairs, lovastatin combined with tamoxifen or cisplatin, were also assayed in human cell lines as proof of principle.

Conclusions

The synergistic interactions of tamoxifen, doxorubicin, methotrexate and rapamycin with lovastatin – because they suggest the possibility of clinical utility - merit further exploration and validation in cell lines and animal models. No less importantly, strong antagonistic interactions between certain agents and lovastatin argue for a cautious, data-driven approach before adding a statin to any chemotherapeutic regimen. We also urge awareness of adventitious statin usage by patients entering cancer treatment protocols.
Appendix
Available only for authorised users
Footnotes
1
The earliest known cases of cancer were discovered in Egyptian skeletons dating from circa 1200–2200 BCE. The antiquity of cancer is discussed in Binder, et al. [1].
 
Literature
1.
go back to reference Binder M, Roberts C, Spencer N, Antoine D, Cartwright C. On the antiquity of cancer: evidence for metastatic carcinoma in a young man from ancient Nubia (c. 1200 BC). PLoS One. 2014;9(3):e90924.PubMedPubMedCentralCrossRef Binder M, Roberts C, Spencer N, Antoine D, Cartwright C. On the antiquity of cancer: evidence for metastatic carcinoma in a young man from ancient Nubia (c. 1200 BC). PLoS One. 2014;9(3):e90924.PubMedPubMedCentralCrossRef
4.
go back to reference Endo A, Kuroda M. Citrinin, an inhibitor of cholesterol synthesis. J Antibiot (Tokyo). 1976;29(8):841–3.CrossRef Endo A, Kuroda M. Citrinin, an inhibitor of cholesterol synthesis. J Antibiot (Tokyo). 1976;29(8):841–3.CrossRef
5.
go back to reference Endo A, Kuroda M, Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme a reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976;72(2):323–6.PubMedCrossRef Endo A, Kuroda M, Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme a reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976;72(2):323–6.PubMedCrossRef
6.
go back to reference Endo A, Kuroda M, Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot (Tokyo). 1976;29(12):1346–8.CrossRef Endo A, Kuroda M, Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot (Tokyo). 1976;29(12):1346–8.CrossRef
7.
go back to reference Brown AG, Smale TC, King TJ, Hasenkamp R, Thompson RH. Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc, Perkin Trans 1. 1976;(11):1165–70. Brown AG, Smale TC, King TJ, Hasenkamp R, Thompson RH. Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc, Perkin Trans 1. 1976;(11):1165–70.
8.
go back to reference Oliver MF. Might treatment of hypercholesterolaemia increase non-cardiac mortality? Lancet (London, England). 1991;337(8756)):1529–31.CrossRef Oliver MF. Might treatment of hypercholesterolaemia increase non-cardiac mortality? Lancet (London, England). 1991;337(8756)):1529–31.CrossRef
10.
go back to reference Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM. Statins and cancer prevention. Nat Rev Cancer. 2005;5(12):930–42.PubMedCrossRef Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM. Statins and cancer prevention. Nat Rev Cancer. 2005;5(12):930–42.PubMedCrossRef
11.
12.
go back to reference Hachem C, Morgan R, Johnson M, Kuebeler M, El-Serag H. Statins and the risk of colorectal carcinoma: a nested case-control study in veterans with diabetes. Am J Gastroenterol. 2009;104(5):1241–8.PubMedPubMedCentralCrossRef Hachem C, Morgan R, Johnson M, Kuebeler M, El-Serag H. Statins and the risk of colorectal carcinoma: a nested case-control study in veterans with diabetes. Am J Gastroenterol. 2009;104(5):1241–8.PubMedPubMedCentralCrossRef
13.
go back to reference Huang WY, Li CH, Lin CL, Liang JA. Long-term statin use in patients with lung cancer and dyslipidemia reduces the risk of death. Oncotarget. 2016;7(27):42208–15.PubMedPubMedCentralCrossRef Huang WY, Li CH, Lin CL, Liang JA. Long-term statin use in patients with lung cancer and dyslipidemia reduces the risk of death. Oncotarget. 2016;7(27):42208–15.PubMedPubMedCentralCrossRef
14.
go back to reference Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology. 2013;144(2):323–32.PubMedCrossRef Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology. 2013;144(2):323–32.PubMedCrossRef
15.
go back to reference Zhang Y, Liang M, Sun C, Qu G, Shi T, Min M, Wu Y, Sun Y. Statin use and risk of pancreatic Cancer: an updated meta-analysis of 26 studies. Pancreas. 2019;48(2):142–50.PubMedCrossRef Zhang Y, Liang M, Sun C, Qu G, Shi T, Min M, Wu Y, Sun Y. Statin use and risk of pancreatic Cancer: an updated meta-analysis of 26 studies. Pancreas. 2019;48(2):142–50.PubMedCrossRef
16.
go back to reference Raval AD, Thakker D, Negi H, Vyas A, Kaur H, Salkini MW. Association between statins and clinical outcomes among men with prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2016;19(2):151–62.PubMedCrossRef Raval AD, Thakker D, Negi H, Vyas A, Kaur H, Salkini MW. Association between statins and clinical outcomes among men with prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2016;19(2):151–62.PubMedCrossRef
17.
go back to reference Iannelli F, Lombardi R, Milone MR, Pucci B, De Rienzo S, Budillon A, Bruzzese F. Targeting Mevalonate pathway in Cancer treatment: repurposing of statins. Recent Pat Anticancer Drug Discov. 2018;13(2):184–200.PubMedCrossRef Iannelli F, Lombardi R, Milone MR, Pucci B, De Rienzo S, Budillon A, Bruzzese F. Targeting Mevalonate pathway in Cancer treatment: repurposing of statins. Recent Pat Anticancer Drug Discov. 2018;13(2):184–200.PubMedCrossRef
18.
20.
go back to reference Matar P, Rozados VR, Roggero EA, Scharovsky OG. Lovastatin inhibits tumor growth and metastasis development of a rat fibrosarcoma. Cancer Biother Radiopharm. 1998;13(5):387–93.PubMedCrossRef Matar P, Rozados VR, Roggero EA, Scharovsky OG. Lovastatin inhibits tumor growth and metastasis development of a rat fibrosarcoma. Cancer Biother Radiopharm. 1998;13(5):387–93.PubMedCrossRef
21.
go back to reference Vallianou NG, Kostantinou A, Kougias M, Kazazis C. Statins and cancer. Anti Cancer Agents Med Chem. 2014;14(5):706–12.CrossRef Vallianou NG, Kostantinou A, Kougias M, Kazazis C. Statins and cancer. Anti Cancer Agents Med Chem. 2014;14(5):706–12.CrossRef
22.
go back to reference Chae YK, Yousaf M, Malecek MK, Carneiro B, Chandra S, Kaplan J, Kalyan A, Sassano A, Platanias LC, Giles F. Statins as anti-cancer therapy; can we translate preclinical and epidemiologic data into clinical benefit? Discov Med. 2015;20(112):413–27.PubMed Chae YK, Yousaf M, Malecek MK, Carneiro B, Chandra S, Kaplan J, Kalyan A, Sassano A, Platanias LC, Giles F. Statins as anti-cancer therapy; can we translate preclinical and epidemiologic data into clinical benefit? Discov Med. 2015;20(112):413–27.PubMed
23.
go back to reference Mei Z, Liang M, Li L, Zhang Y, Wang Q, Yang W. Effects of statins on cancer mortality and progression: a systematic review and meta-analysis of 95 cohorts including 1,111,407 individuals. Int J Cancer. 2017;140(5):1068–81.PubMedCrossRef Mei Z, Liang M, Li L, Zhang Y, Wang Q, Yang W. Effects of statins on cancer mortality and progression: a systematic review and meta-analysis of 95 cohorts including 1,111,407 individuals. Int J Cancer. 2017;140(5):1068–81.PubMedCrossRef
24.
go back to reference Farooqi MAM, Malhotra N, Mukherjee SD, Sanger S, Dhesy-Thind SK, Ellis P, Leong DP. Statin therapy in the treatment of active cancer: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2018;13(12):e0209486.PubMedPubMedCentralCrossRef Farooqi MAM, Malhotra N, Mukherjee SD, Sanger S, Dhesy-Thind SK, Ellis P, Leong DP. Statin therapy in the treatment of active cancer: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2018;13(12):e0209486.PubMedPubMedCentralCrossRef
25.
go back to reference Nakamura CE, Abeles RH. Mode of interaction of beta-hydroxy-beta-methylglutaryl coenzyme a reductase with strong binding inhibitors: compactin and related compounds. Biochemistry. 1985;24(6):1364–76.PubMedCrossRef Nakamura CE, Abeles RH. Mode of interaction of beta-hydroxy-beta-methylglutaryl coenzyme a reductase with strong binding inhibitors: compactin and related compounds. Biochemistry. 1985;24(6):1364–76.PubMedCrossRef
27.
go back to reference Botstein D, Chervitz SA, Cherry JM. Yeast as a model organism. Science (New York, NY). 1997;277(5330):1259–60.CrossRef Botstein D, Chervitz SA, Cherry JM. Yeast as a model organism. Science (New York, NY). 1997;277(5330):1259–60.CrossRef
28.
go back to reference Guaragnella N, Palermo V, Galli A, Moro L, Mazzoni C, Giannattasio S. The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res. 2014;14(1):2–16.PubMedCrossRef Guaragnella N, Palermo V, Galli A, Moro L, Mazzoni C, Giannattasio S. The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res. 2014;14(1):2–16.PubMedCrossRef
29.
go back to reference Skrzypek MS, Nash RS, Wong ED, MacPherson KA, Hellerstedt ST, Engel SR, Karra K, Weng S, Sheppard TK, Binkley G, et al. Saccharomyces genome database informs human biology. Nucleic Acids Res. 2018;46(D1):D736–d742.PubMedCrossRef Skrzypek MS, Nash RS, Wong ED, MacPherson KA, Hellerstedt ST, Engel SR, Karra K, Weng S, Sheppard TK, Binkley G, et al. Saccharomyces genome database informs human biology. Nucleic Acids Res. 2018;46(D1):D736–d742.PubMedCrossRef
30.
go back to reference Cabral ME, Figueroa LI, Fariña JI. Synergistic antifungal activity of statin-azole associations as witnessed by Saccharomyces cerevisiae- and Candida utilis-bioassays and ergosterol quantification. Rev Iberoam Micol. 2013;30(1):31–8.PubMedCrossRef Cabral ME, Figueroa LI, Fariña JI. Synergistic antifungal activity of statin-azole associations as witnessed by Saccharomyces cerevisiae- and Candida utilis-bioassays and ergosterol quantification. Rev Iberoam Micol. 2013;30(1):31–8.PubMedCrossRef
31.
go back to reference Coorey NV, Sampson LD, Barber JM, Bellows DS. Chemical genetic and chemogenomic analysis in yeast. Methods Mol Biol. 2014;1205:169–86.PubMedCrossRef Coorey NV, Sampson LD, Barber JM, Bellows DS. Chemical genetic and chemogenomic analysis in yeast. Methods Mol Biol. 2014;1205:169–86.PubMedCrossRef
32.
go back to reference Ericson E, Gebbia M, Heisler LE, Wildenhain J, Tyers M, Giaever G, Nislow C. Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast. PLoS Genet. 2008;4(8):e1000151.PubMedPubMedCentralCrossRef Ericson E, Gebbia M, Heisler LE, Wildenhain J, Tyers M, Giaever G, Nislow C. Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast. PLoS Genet. 2008;4(8):e1000151.PubMedPubMedCentralCrossRef
33.
go back to reference Fortney K, Xie W, Kotlyar M, Griesman J, Kotseruba Y, Jurisica I. NetwoRx: connecting drugs to networks and phenotypes in Saccharomyces cerevisiae. Nucleic Acids Res. 2013;41(Database issue):D720–7.PubMed Fortney K, Xie W, Kotlyar M, Griesman J, Kotseruba Y, Jurisica I. NetwoRx: connecting drugs to networks and phenotypes in Saccharomyces cerevisiae. Nucleic Acids Res. 2013;41(Database issue):D720–7.PubMed
34.
go back to reference Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science (New York, NY). 2008;320(5874):362–5.CrossRef Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science (New York, NY). 2008;320(5874):362–5.CrossRef
36.
go back to reference Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost RL, Ho CH, et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell. 2006;126(3):611–25.PubMedCrossRef Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost RL, Ho CH, et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell. 2006;126(3):611–25.PubMedCrossRef
37.
go back to reference Reid RJ, Benedetti P, Bjornsti MA. Yeast as a model organism for studying the actions of DNA topoisomerase-targeted drugs. Biochim Biophys Acta. 1998;1400(1–3):289–300.PubMedCrossRef Reid RJ, Benedetti P, Bjornsti MA. Yeast as a model organism for studying the actions of DNA topoisomerase-targeted drugs. Biochim Biophys Acta. 1998;1400(1–3):289–300.PubMedCrossRef
38.
go back to reference Sturgeon CM, Kemmer D, Anderson HJ, Roberge M. Yeast as a tool to uncover the cellular targets of drugs. Biotechnol J. 2006;1(3):289–98.PubMedCrossRef Sturgeon CM, Kemmer D, Anderson HJ, Roberge M. Yeast as a tool to uncover the cellular targets of drugs. Biotechnol J. 2006;1(3):289–98.PubMedCrossRef
39.
go back to reference Torres NP, Lee AY, Giaever G, Nislow C, Brown GW. A high-throughput yeast assay identifies synergistic drug combinations. Assay Drug Dev Technol. 2013;11(5):299–307.PubMedCrossRef Torres NP, Lee AY, Giaever G, Nislow C, Brown GW. A high-throughput yeast assay identifies synergistic drug combinations. Assay Drug Dev Technol. 2013;11(5):299–307.PubMedCrossRef
40.
41.
go back to reference Menacho-Marquez M, Murguia JR. Yeast on drugs: Saccharomyces cerevisiae as a tool for anticancer drug research. Clin Transl Oncol. 2007;9(4):221–8.PubMedCrossRef Menacho-Marquez M, Murguia JR. Yeast on drugs: Saccharomyces cerevisiae as a tool for anticancer drug research. Clin Transl Oncol. 2007;9(4):221–8.PubMedCrossRef
43.
go back to reference Lee W, St Onge RP, Proctor M, Flaherty P, Jordan MI, Arkin AP, Davis RW, Nislow C, Giaever G. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet. 2005;1(2):e24.PubMedPubMedCentralCrossRef Lee W, St Onge RP, Proctor M, Flaherty P, Jordan MI, Arkin AP, Davis RW, Nislow C, Giaever G. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet. 2005;1(2):e24.PubMedPubMedCentralCrossRef
44.
go back to reference Wu HI, Brown JA, Dorie MJ, Lazzeroni L, Brown JM. Genome-wide identification of genes conferring resistance to the anticancer agents cisplatin, oxaliplatin, and mitomycin C. Cancer Res. 2004;64(11):3940–8.PubMedCrossRef Wu HI, Brown JA, Dorie MJ, Lazzeroni L, Brown JM. Genome-wide identification of genes conferring resistance to the anticancer agents cisplatin, oxaliplatin, and mitomycin C. Cancer Res. 2004;64(11):3940–8.PubMedCrossRef
45.
go back to reference Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, Jodrell DI. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics (Oxford, England). 2016;32(18):2866–8.CrossRef Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, Jodrell DI. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics (Oxford, England). 2016;32(18):2866–8.CrossRef
46.
go back to reference Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953;3(6):285–90.PubMed Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953;3(6):285–90.PubMed
47.
go back to reference Wiseman H, Cannon M, Arnstein HR. Observation and significance of growth inhibition of Saccharomyces cerevisiae (A224A) by the anti-oestrogen drug tamoxifen. Biochem Soc Trans. 1989;17(6):1038–9.PubMedCrossRef Wiseman H, Cannon M, Arnstein HR. Observation and significance of growth inhibition of Saccharomyces cerevisiae (A224A) by the anti-oestrogen drug tamoxifen. Biochem Soc Trans. 1989;17(6):1038–9.PubMedCrossRef
48.
go back to reference Lorenz RT, Parks LW. Effects of lovastatin (mevinolin) on sterol levels and on activity of azoles in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1990;34(9):1660–5.PubMedPubMedCentralCrossRef Lorenz RT, Parks LW. Effects of lovastatin (mevinolin) on sterol levels and on activity of azoles in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1990;34(9):1660–5.PubMedPubMedCentralCrossRef
50.
go back to reference Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.CrossRef Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.CrossRef
51.
go back to reference Burshell A, Stathis PA, Do Y, Miller SC, Feldman D. Characterization of an estrogen-binding protein in the yeast Saccharomyces cerevisiae. J Biol Chem. 1984;259(6):3450–6.PubMedCrossRef Burshell A, Stathis PA, Do Y, Miller SC, Feldman D. Characterization of an estrogen-binding protein in the yeast Saccharomyces cerevisiae. J Biol Chem. 1984;259(6):3450–6.PubMedCrossRef
52.
go back to reference Feldman D, Do Y, Burshell A, Stathis P, Loose DS. An estrogen-binding protein and endogenous ligand in Saccharomyces cerevisiae: possible hormone receptor system. Science (New York, NY). 1982;218(4569):297–8.CrossRef Feldman D, Do Y, Burshell A, Stathis P, Loose DS. An estrogen-binding protein and endogenous ligand in Saccharomyces cerevisiae: possible hormone receptor system. Science (New York, NY). 1982;218(4569):297–8.CrossRef
53.
go back to reference Radin DP, Patel P. Delineating the molecular mechanisms of tamoxifen's oncolytic actions in estrogen receptor-negative cancers. Eur J Pharmacol. 2016;781:173–80.PubMedCrossRef Radin DP, Patel P. Delineating the molecular mechanisms of tamoxifen's oncolytic actions in estrogen receptor-negative cancers. Eur J Pharmacol. 2016;781:173–80.PubMedCrossRef
54.
go back to reference Tan CK, Chow PK, Findlay M, Wong C, Machin D. Use of tamoxifen in hepatocellular carcinoma: a review and paradigm shift. J Gastroenterol Hepatol. 2000;15(7):725–9.PubMedCrossRef Tan CK, Chow PK, Findlay M, Wong C, Machin D. Use of tamoxifen in hepatocellular carcinoma: a review and paradigm shift. J Gastroenterol Hepatol. 2000;15(7):725–9.PubMedCrossRef
55.
go back to reference Wiseman H. Tamoxifen and estrogens as membrane antioxidants: comparison with cholesterol. Methods Enzymol. 1994;234:590–602.PubMedCrossRef Wiseman H. Tamoxifen and estrogens as membrane antioxidants: comparison with cholesterol. Methods Enzymol. 1994;234:590–602.PubMedCrossRef
56.
go back to reference Wiseman H, Cannon M, Arnstein HR. Tamoxifen inhibits RNA and protein synthesis simultaneously in Saccharomyces cerevisiae: partial protection by antioxidants. Biochem Soc Trans. 1990;18(5):877–8.PubMedCrossRef Wiseman H, Cannon M, Arnstein HR. Tamoxifen inhibits RNA and protein synthesis simultaneously in Saccharomyces cerevisiae: partial protection by antioxidants. Biochem Soc Trans. 1990;18(5):877–8.PubMedCrossRef
57.
go back to reference Wiseman H, Cannon M, Arnstein HR, Barlow DJ. The structural mimicry of membrane sterols by tamoxifen: evidence from cholesterol coefficients and molecular-modelling for its action as a membrane anti-oxidant and an anti-cancer agent. Biochim Biophys Acta. 1992;1138(3):197–202.PubMedCrossRef Wiseman H, Cannon M, Arnstein HR, Barlow DJ. The structural mimicry of membrane sterols by tamoxifen: evidence from cholesterol coefficients and molecular-modelling for its action as a membrane anti-oxidant and an anti-cancer agent. Biochim Biophys Acta. 1992;1138(3):197–202.PubMedCrossRef
58.
go back to reference Wiseman H, Laughton MJ, Arnstein HR, Cannon M, Halliwell B. The antioxidant action of tamoxifen and its metabolites. Inhibition of lipid peroxidation. FEBS Lett. 1990;263(2):192–4.PubMedCrossRef Wiseman H, Laughton MJ, Arnstein HR, Cannon M, Halliwell B. The antioxidant action of tamoxifen and its metabolites. Inhibition of lipid peroxidation. FEBS Lett. 1990;263(2):192–4.PubMedCrossRef
59.
go back to reference Lim YC, Li L, Desta Z, Zhao Q, Rae JM, Flockhart DA, Skaar TC. Endoxifen, a secondary metabolite of tamoxifen, and 4-OH-tamoxifen induce similar changes in global gene expression patterns in MCF-7 breast cancer cells. J Pharmacol Exp Ther. 2006;318(2):503–12.PubMedCrossRef Lim YC, Li L, Desta Z, Zhao Q, Rae JM, Flockhart DA, Skaar TC. Endoxifen, a secondary metabolite of tamoxifen, and 4-OH-tamoxifen induce similar changes in global gene expression patterns in MCF-7 breast cancer cells. J Pharmacol Exp Ther. 2006;318(2):503–12.PubMedCrossRef
60.
go back to reference Maximov PY, McDaniel RE, Fernandes DJ, Korostyshevskiy VR, Bhatta P, Mürdter TE, Flockhart DA, Jordan VC. Simulation with cells in vitro of tamoxifen treatment in premenopausal breast cancer patients with different CYP2D6 genotypes. Br J Pharmacol. 2014;171(24):5624–35.PubMedPubMedCentralCrossRef Maximov PY, McDaniel RE, Fernandes DJ, Korostyshevskiy VR, Bhatta P, Mürdter TE, Flockhart DA, Jordan VC. Simulation with cells in vitro of tamoxifen treatment in premenopausal breast cancer patients with different CYP2D6 genotypes. Br J Pharmacol. 2014;171(24):5624–35.PubMedPubMedCentralCrossRef
61.
go back to reference Brauch H, Mürdter TE, Eichelbaum M, Schwab M. Pharmacogenomics of tamoxifen therapy. Clin Chem. 2009;55(10):1770–82.PubMedCrossRef Brauch H, Mürdter TE, Eichelbaum M, Schwab M. Pharmacogenomics of tamoxifen therapy. Clin Chem. 2009;55(10):1770–82.PubMedCrossRef
62.
go back to reference Zheng A, Kallio A, Härkönen P. Tamoxifen-induced rapid death of MCF-7 breast cancer cells is mediated via extracellularly signal-regulated kinase signaling and can be abrogated by estrogen. Endocrinology. 2007;148(6):2764–77.PubMedCrossRef Zheng A, Kallio A, Härkönen P. Tamoxifen-induced rapid death of MCF-7 breast cancer cells is mediated via extracellularly signal-regulated kinase signaling and can be abrogated by estrogen. Endocrinology. 2007;148(6):2764–77.PubMedCrossRef
63.
go back to reference Piccolo MT, Menale C, Crispi S. Combined anticancer therapies: an overview of the latest applications. Anti Cancer Agents Med Chem. 2015;15(4):408–22.CrossRef Piccolo MT, Menale C, Crispi S. Combined anticancer therapies: an overview of the latest applications. Anti Cancer Agents Med Chem. 2015;15(4):408–22.CrossRef
64.
go back to reference Vlot AHC, Aniceto N, Menden MP, Ulrich-Merzenich G, Bender A. Applying synergy metrics to combination screening data: agreements, disagreements and pitfalls. Drug Discov Today. 2019;24(12):2286–98.PubMedCrossRef Vlot AHC, Aniceto N, Menden MP, Ulrich-Merzenich G, Bender A. Applying synergy metrics to combination screening data: agreements, disagreements and pitfalls. Drug Discov Today. 2019;24(12):2286–98.PubMedCrossRef
65.
go back to reference Lehar J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, Heilbut AM, Short GF 3rd, Giusti LC, Nolan GP, Magid OA, et al. Chemical combination effects predict connectivity in biological systems. Mol Syst Biol. 2007;3:80.PubMedPubMedCentralCrossRef Lehar J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, Heilbut AM, Short GF 3rd, Giusti LC, Nolan GP, Magid OA, et al. Chemical combination effects predict connectivity in biological systems. Mol Syst Biol. 2007;3:80.PubMedPubMedCentralCrossRef
66.
go back to reference Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, Santoro A, Laezza C, Bifulco M. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev. 2012;64(1):102–46.PubMedCrossRef Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, Santoro A, Laezza C, Bifulco M. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev. 2012;64(1):102–46.PubMedCrossRef
67.
go back to reference Amelio I, Lisitsa A, Knight RA, Melino G, Antonov AV. Polypharmacology of approved anticancer drugs. Curr Drug Targets. 2017;18(5):534–43.PubMedCrossRef Amelio I, Lisitsa A, Knight RA, Melino G, Antonov AV. Polypharmacology of approved anticancer drugs. Curr Drug Targets. 2017;18(5):534–43.PubMedCrossRef
68.
go back to reference Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014;57(19):7874–87.PubMedCrossRef Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014;57(19):7874–87.PubMedCrossRef
69.
go back to reference Mayer LD, Janoff AS. Optimizing combination chemotherapy by controlling drug ratios. Mol Interv. 2007;7(4):216–23.PubMedCrossRef Mayer LD, Janoff AS. Optimizing combination chemotherapy by controlling drug ratios. Mol Interv. 2007;7(4):216–23.PubMedCrossRef
70.
go back to reference Horodinschi RN, Stanescu AMA, Bratu OG, Pantea Stoian A, Radavoi DG, Diaconu CC. Treatment with Statins in Elderly Patients. Medicina (Kaunas). 2019;55(11). Horodinschi RN, Stanescu AMA, Bratu OG, Pantea Stoian A, Radavoi DG, Diaconu CC. Treatment with Statins in Elderly Patients. Medicina (Kaunas). 2019;55(11).
71.
go back to reference Palleria C, Roberti R, Iannone LF, Tallarico M, Barbieri MA, Vero A, Manti A, De Sarro G, Spina E, Russo E. Clinically relevant drug interactions between statins and antidepressants. J Clin Pharm Ther. 2020;45(2):227–39.PubMedCrossRef Palleria C, Roberti R, Iannone LF, Tallarico M, Barbieri MA, Vero A, Manti A, De Sarro G, Spina E, Russo E. Clinically relevant drug interactions between statins and antidepressants. J Clin Pharm Ther. 2020;45(2):227–39.PubMedCrossRef
72.
go back to reference Siwek M, Woroń J, Gorostowicz A, Wordliczek J. Adverse effects of interactions between antipsychotics and medications used in the treatment of cardiovascular disorders. Pharmacol Rep. 2020;72(2):350–9.PubMedCrossRef Siwek M, Woroń J, Gorostowicz A, Wordliczek J. Adverse effects of interactions between antipsychotics and medications used in the treatment of cardiovascular disorders. Pharmacol Rep. 2020;72(2):350–9.PubMedCrossRef
73.
go back to reference Wang S, Li W, Yang J, Yang Z, Yang C, Jin H. Research Progress of herbal medicines on drug metabolizing enzymes: consideration based on toxicology. Curr Drug Metab. 2020;21(12):913–27.PubMedCrossRef Wang S, Li W, Yang J, Yang Z, Yang C, Jin H. Research Progress of herbal medicines on drug metabolizing enzymes: consideration based on toxicology. Curr Drug Metab. 2020;21(12):913–27.PubMedCrossRef
Metadata
Title
Complex interactions of lovastatin with 10 chemotherapeutic drugs: a rigorous evaluation of synergism and antagonism
Authors
Kaitlyn A. Khandelwal Gilman
Seungmin Han
Young-Wook Won
Charles W. Putnam
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-07963-w

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine