Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Research article

Standardization of platelet releasate products for clinical applications in cell therapy: a mathematical approach

Authors: Francesco Agostini, Jerry Polesel, Monica Battiston, Elisabetta Lombardi, Stefania Zanolin, Alessandro Da Ponte, Giuseppe Astori, Cristina Durante, Mario Mazzucato

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Standardized animal-free components are required for manufacturing cell-based medicinal products. Human platelet concentrates are sources of growth factors for cell expansion but such products are characterized by undesired variability. Pooling together single-donor products improves consistency, but the minimal pool sample size was never determined.

Methods

Supernatant rich in growth factors (SRGF) derived from n = 44 single-donor platelet-apheresis was obtained by CaCl2 addition. n = 10 growth factor concentrations were measured. The data matrix was analyzed by a novel statistical algorithm programmed to create 500 groups of random data from single-donor SRGF and to repeat this task increasing group statistical sample size from n = 2 to n = 20. Thereafter, in created groups (n = 9500), the software calculated means for each growth factor and, matching groups with the same sample size, the software retrieved the percent coefficient of variation (CV) between calculated means. A 20% CV was defined as threshold. For validation, we assessed the CV of concentrations measured in n = 10 pools manufactured according to algorithm results. Finally, we compared growth rate and differentiation potential of adipose-derived stromal/stem cells (ASC) expanded by separate SRGF pools.

Results

Growth factor concentrations in single-donor SRGF were characterized by high variability (mean (pg/ml)–CV); VEGF: 950–81.4; FGF-b: 27–74.6; PDGF-AA: 7883–28.8; PDGF-AB: 107834–32.5; PDGF-BB: 11142–48.4; Endostatin: 305034–16.2; Angiostatin: 197284–32.9; TGF-β1: 68382–53.7; IGF-I: 70876–38.3; EGF: 2411–30.2). In silico performed analysis suggested that pooling n = 16 single-donor SRGF reduced CV below 20%. Concentrations measured in 10 pools of n = 16 single SRGF were not different from mean values measured in single SRGF, but the CV was reduced to or below the threshold. Separate SRGF pools failed to differently affect ASC growth rate (slope pool A = 0.6; R2 = 0.99; slope pool B = 0.7; R2 0.99) or differentiation potential.

Discussion

Results deriving from our algorithm and from validation utilizing real SRGF pools demonstrated that pooling n = 16 single-donor SRGF products can ameliorate variability of final growth factor concentrations. Different pools of n = 16 single donor SRGF displayed consitent capability to modulate growth and differentiation potential of expanded ASC. Increasing the pool size should not further improve product composition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Expert Committee of European Commission. Good manufacturing practice—volume 4. The rules governing medicinal products in the European Union; 2011. Expert Committee of European Commission. Good manufacturing practice—volume 4. The rules governing medicinal products in the European Union; 2011.
2.
go back to reference Karnieli O, Friedner OM, Allickson JG, Zhang N, Jung S, Fiorentini D, et al. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy. 2017;19:155–69.CrossRefPubMed Karnieli O, Friedner OM, Allickson JG, Zhang N, Jung S, Fiorentini D, et al. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy. 2017;19:155–69.CrossRefPubMed
3.
go back to reference Spees JL, Gregory CA, Singh H, Tucker HA, Peister A, Lynch PJ, et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther. 2004;9:747–56.CrossRefPubMed Spees JL, Gregory CA, Singh H, Tucker HA, Peister A, Lynch PJ, et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther. 2004;9:747–56.CrossRefPubMed
4.
go back to reference Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother. 2000;49:152–6.CrossRefPubMed Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother. 2000;49:152–6.CrossRefPubMed
5.
go back to reference Abbott A, Cyranoski D. Biologists seek to head off future sources of infection. Nature. 2003;423:3.CrossRef Abbott A, Cyranoski D. Biologists seek to head off future sources of infection. Nature. 2003;423:3.CrossRef
6.
go back to reference Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I, Collinge J, et al. The same prion strain causes vCJD and BSE. Nature. 1997;389(448–50):526. Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I, Collinge J, et al. The same prion strain causes vCJD and BSE. Nature. 1997;389(448–50):526.
7.
go back to reference Committeee for medicinal products for human use (CHMP). Note for guidance on the use of bovine serum in the manufacture of human biological products. European Medicine Agency; 2012. p. 1–8. Committeee for medicinal products for human use (CHMP). Note for guidance on the use of bovine serum in the manufacture of human biological products. European Medicine Agency; 2012. p. 1–8.
8.
go back to reference WHO expert group. WHO guidelines on tissue infectivity distribution in transmissible spongiform encephalopaties. World Health Organization; 2010. p. 1–21. WHO expert group. WHO guidelines on tissue infectivity distribution in transmissible spongiform encephalopaties. World Health Organization; 2010. p. 1–21.
9.
go back to reference Hemeda H, Giebel B, Wagner W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy. 2014;16:170–80.CrossRefPubMed Hemeda H, Giebel B, Wagner W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy. 2014;16:170–80.CrossRefPubMed
10.
go back to reference Shih DT, Burnouf T. Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. N Biotechnol. 2015;32:199–211.CrossRefPubMed Shih DT, Burnouf T. Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. N Biotechnol. 2015;32:199–211.CrossRefPubMed
11.
go back to reference Capelli C, Pedrini O, Valgardsdottir R, Da RF, Golay J, Introna M. Clinical grade expansion of MSCs. Immunol Lett. 2015;168:222–7.CrossRefPubMed Capelli C, Pedrini O, Valgardsdottir R, Da RF, Golay J, Introna M. Clinical grade expansion of MSCs. Immunol Lett. 2015;168:222–7.CrossRefPubMed
12.
go back to reference Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X, et al. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol. 2005;205:228–36.CrossRefPubMed Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X, et al. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol. 2005;205:228–36.CrossRefPubMed
13.
go back to reference Schallmoser K, Strunk D. Generation of a pool of human platelet lysate and efficient use in cell culture. Methods Mol Biol. 2013;946:349–62.CrossRefPubMed Schallmoser K, Strunk D. Generation of a pool of human platelet lysate and efficient use in cell culture. Methods Mol Biol. 2013;946:349–62.CrossRefPubMed
14.
go back to reference Schallmoser K, Strunk D. Preparation of pooled human platelet lysate (pHPL) as an efficient supplement for animal serum-free human stem cell cultures. J Vis Exp. 2009;32:e1523. Schallmoser K, Strunk D. Preparation of pooled human platelet lysate (pHPL) as an efficient supplement for animal serum-free human stem cell cultures. J Vis Exp. 2009;32:e1523.
15.
go back to reference Durante C, Agostini F, Abbruzzese L, Toffola RT, Zanolin S, Suine C, et al. Growth factor release from platelet concentrates: analytic quantification and characterization for clinical applications. Vox Sang. 2013;105:129–36.CrossRefPubMed Durante C, Agostini F, Abbruzzese L, Toffola RT, Zanolin S, Suine C, et al. Growth factor release from platelet concentrates: analytic quantification and characterization for clinical applications. Vox Sang. 2013;105:129–36.CrossRefPubMed
16.
go back to reference Araki J, Jona M, Eto H, Aoi N, Kato H, Suga H, et al. Optimized preparation method of platelet-concentrated plasma and noncoagulating platelet-derived factor concentrates: maximization of platelet concentration and removal of fibrinogen. Tissue Eng Part C Methods. 2012;18:176–85.CrossRefPubMed Araki J, Jona M, Eto H, Aoi N, Kato H, Suga H, et al. Optimized preparation method of platelet-concentrated plasma and noncoagulating platelet-derived factor concentrates: maximization of platelet concentration and removal of fibrinogen. Tissue Eng Part C Methods. 2012;18:176–85.CrossRefPubMed
17.
go back to reference Bernardi M, Albiero E, Alghisi A, Chieregato K, Lievore C, Madeo D, et al. Production of human platelet lysate by use of ultrasound for ex vivo expansion of human bone marrow-derived mesenchymal stromal cells. Cytotherapy. 2013;15:920–9.CrossRefPubMed Bernardi M, Albiero E, Alghisi A, Chieregato K, Lievore C, Madeo D, et al. Production of human platelet lysate by use of ultrasound for ex vivo expansion of human bone marrow-derived mesenchymal stromal cells. Cytotherapy. 2013;15:920–9.CrossRefPubMed
19.
go back to reference Efron B, Tibshirani RJ. An introduction to the Bootstrap. 2nd ed. Boca Raton: Chapman & Hall/CRC; 1993.CrossRef Efron B, Tibshirani RJ. An introduction to the Bootstrap. 2nd ed. Boca Raton: Chapman & Hall/CRC; 1993.CrossRef
20.
go back to reference Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641–8.CrossRefPubMedPubMedCentral Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641–8.CrossRefPubMedPubMedCentral
21.
go back to reference Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schafer R, et al. Platelet lysate as a substitute for animal serum for the ex vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther. 2016;7:93.CrossRefPubMedPubMedCentral Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schafer R, et al. Platelet lysate as a substitute for animal serum for the ex vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther. 2016;7:93.CrossRefPubMedPubMedCentral
22.
go back to reference Borghese C, Agostini F, Durante C, Colombatti A, Mazzucato M, Aldinucci D. Clinical-grade quality platelet-rich plasma releasate (PRP-R/SRGF) from CaCl2 -activated platelet concentrates promoted expansion of mesenchymal stromal cells. Vox Sang. 2016;111:197–205.CrossRefPubMed Borghese C, Agostini F, Durante C, Colombatti A, Mazzucato M, Aldinucci D. Clinical-grade quality platelet-rich plasma releasate (PRP-R/SRGF) from CaCl2 -activated platelet concentrates promoted expansion of mesenchymal stromal cells. Vox Sang. 2016;111:197–205.CrossRefPubMed
23.
go back to reference Weibrich G, Kleis WK, Hafner G, Hitzler WE. Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Craniomaxillofac Surg. 2002;30:97–102.CrossRefPubMed Weibrich G, Kleis WK, Hafner G, Hitzler WE. Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Craniomaxillofac Surg. 2002;30:97–102.CrossRefPubMed
24.
go back to reference Lohmann M, Walenda G, Hemeda H, Joussen S, Drescher W, Jockenhoevel S, et al. Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells. PLoS ONE. 2012;7:e37839.CrossRefPubMedPubMedCentral Lohmann M, Walenda G, Hemeda H, Joussen S, Drescher W, Jockenhoevel S, et al. Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells. PLoS ONE. 2012;7:e37839.CrossRefPubMedPubMedCentral
25.
go back to reference Chen J, Ma Y, Wang Z, Wang H, Wang L, Xiao F, et al. Thrombin promotes fibronectin secretion by bone marrow mesenchymal stem cells via the protease-activated receptor mediated signalling pathways. Stem Cell Res Ther. 2014;5:36.CrossRefPubMedPubMedCentral Chen J, Ma Y, Wang Z, Wang H, Wang L, Xiao F, et al. Thrombin promotes fibronectin secretion by bone marrow mesenchymal stem cells via the protease-activated receptor mediated signalling pathways. Stem Cell Res Ther. 2014;5:36.CrossRefPubMedPubMedCentral
26.
go back to reference Zhou S, Xiao W, Pan X, Zhu M, Yang Z, Zhang F, et al. Thrombin promotes proliferation of human lung fibroblasts via protease activated receptor-1-dependent and NF-kappaB-independent pathways. Cell Biol Int. 2014;38:747–56.CrossRefPubMed Zhou S, Xiao W, Pan X, Zhu M, Yang Z, Zhang F, et al. Thrombin promotes proliferation of human lung fibroblasts via protease activated receptor-1-dependent and NF-kappaB-independent pathways. Cell Biol Int. 2014;38:747–56.CrossRefPubMed
27.
go back to reference Dombrowski C, Song SJ, Chuan P, Lim X, Susanto E, Sawyer AA, et al. Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem Cells Dev. 2009;18:661–70.CrossRefPubMed Dombrowski C, Song SJ, Chuan P, Lim X, Susanto E, Sawyer AA, et al. Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem Cells Dev. 2009;18:661–70.CrossRefPubMed
28.
go back to reference Hemeda H, Kalz J, Walenda G, Lohmann M, Wagner W. Heparin concentration is critical for cell culture with human platelet lysate. Cytotherapy. 2013;15:1174–81.CrossRefPubMed Hemeda H, Kalz J, Walenda G, Lohmann M, Wagner W. Heparin concentration is critical for cell culture with human platelet lysate. Cytotherapy. 2013;15:1174–81.CrossRefPubMed
Metadata
Title
Standardization of platelet releasate products for clinical applications in cell therapy: a mathematical approach
Authors
Francesco Agostini
Jerry Polesel
Monica Battiston
Elisabetta Lombardi
Stefania Zanolin
Alessandro Da Ponte
Giuseppe Astori
Cristina Durante
Mario Mazzucato
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-017-1210-z

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.