Skip to main content
Top
Published in: Virology Journal 1/2011

Open Access 01-12-2011 | Research

Sprouty is a cytoplasmic target of adenoviral E1A oncoproteins to regulate the receptor tyrosine kinase signalling pathway

Authors: Angelika Zaremba, Ursula Schmuecker, Helmut Esche

Published in: Virology Journal | Issue 1/2011

Login to get access

Abstract

Background

Oncoproteins encoded by the early region of adenoviruses have been shown to be powerful tools to study gene regulatory mechanisms, which affect major cellular events such as proliferation, differentiation, apoptosis and oncogenic transformation. They are possesing a key role to favor viral replication via their interaction with multiple cellular proteins. In a yeast two-hybrid screen we have identified Sprouty1 (Spry1) as a target of adenoviral E1A Oncoproteins. Spry proteins are central and complex regulators of the receptor tyrosine kinase (RTK) signalling pathway. The deregulation of Spry family members is often associated with alterations of the RTK signalling and its downstream effectors, leading to the ERK pathway.

Results

Here, we confirm our yeast two-hybrid data, showing the interaction between Spry1 and E1A in GST pull-down and immunoprecipitation assays. We also demonstrated the interaction of E1A with two further Spry isoforms. Using deletion mutants we identified the N-terminus and the CR conserved region (CR) 3 of E1A- and the C-terminal half of Spry1, which contains the highly conserved Spry domain, as the essential sites for direct interaction between Spry and E1A. Immunofluorescent microscopy data revealed a co-localization of E1A13S with Spry1 in the cytoplasm. SRE and TRE reporter assays demonstrated that co-expression of Spry1 with E1A13S abolishes the inhibitory function of Spry1 in RTK signalling, which is consequently accompanied with a decrease of E1A13S-induced gene expression.

Conclusions

These results establish Spry1 as a cytoplasmic localized cellular target for E1A oncoproteins to regulate the RTK signalling pathway, and consequently cellular events downstream of RTK that are essential for viral replication and transformation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berk AJ: Adenovirus promoters and E1A transactivation. Annu Rev Genet 1986, 20: 45-79. 10.1146/annurev.ge.20.120186.000401CrossRefPubMed Berk AJ: Adenovirus promoters and E1A transactivation. Annu Rev Genet 1986, 20: 45-79. 10.1146/annurev.ge.20.120186.000401CrossRefPubMed
2.
go back to reference Brockmann D, Esche H: Regulation of viral and cellular gene expression by E1A proteins encoded by the oncogenic adenovirus type 12. Curr Top Microbiol Immunol 1995,199(Pt 3):81-112.PubMed Brockmann D, Esche H: Regulation of viral and cellular gene expression by E1A proteins encoded by the oncogenic adenovirus type 12. Curr Top Microbiol Immunol 1995,199(Pt 3):81-112.PubMed
3.
go back to reference Gallimore PH, Turnell AS: Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 2001, 20: 7824-7835. 10.1038/sj.onc.1204913CrossRefPubMed Gallimore PH, Turnell AS: Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 2001, 20: 7824-7835. 10.1038/sj.onc.1204913CrossRefPubMed
4.
go back to reference White E: Regulation of p53-dependent apoptosis by E1A and E1B. Curr Top Microbiol Immunol 1995,199(Pt 3):34-58.PubMed White E: Regulation of p53-dependent apoptosis by E1A and E1B. Curr Top Microbiol Immunol 1995,199(Pt 3):34-58.PubMed
5.
go back to reference Wienzek S, Roth J, Dobbelstein M: E1B 55-kilodalton oncoproteins of adenovirus types 5 and 12 inactivate and relocalize p53, but not p51 or p73, and cooperate with E4orf6 proteins to destabilize p53. J Virol 2000, 74: 193-202. 10.1128/JVI.74.1.193-202.2000PubMedCentralCrossRefPubMed Wienzek S, Roth J, Dobbelstein M: E1B 55-kilodalton oncoproteins of adenovirus types 5 and 12 inactivate and relocalize p53, but not p51 or p73, and cooperate with E4orf6 proteins to destabilize p53. J Virol 2000, 74: 193-202. 10.1128/JVI.74.1.193-202.2000PubMedCentralCrossRefPubMed
6.
go back to reference Williams J, Williams M, Liu C, Telling G: Assessing the role of E1A in the differential oncogenicity of group A and group C human adenoviruses. Curr Top Microbiol Immunol 1995,199(Pt 3):149-175.PubMed Williams J, Williams M, Liu C, Telling G: Assessing the role of E1A in the differential oncogenicity of group A and group C human adenoviruses. Curr Top Microbiol Immunol 1995,199(Pt 3):149-175.PubMed
7.
go back to reference Sawada Y, Fujinaga K: Mapping of adenovirus 12 mRNA's transcribed from the transforming region. J Virol 1980, 36: 639-651.PubMedCentralPubMed Sawada Y, Fujinaga K: Mapping of adenovirus 12 mRNA's transcribed from the transforming region. J Virol 1980, 36: 639-651.PubMedCentralPubMed
8.
go back to reference Arany Z, Newsome D, Oldread E, Livingston DM, Eckner R: A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 1995, 374: 81-84. 10.1038/374081a0CrossRefPubMed Arany Z, Newsome D, Oldread E, Livingston DM, Eckner R: A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 1995, 374: 81-84. 10.1038/374081a0CrossRefPubMed
9.
go back to reference Ferguson B, Krippl B, Andrisani O, Jones N, Westphal H, Rosenberg M: E1A 13S and 12S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Mol Cell Biol 1985, 5: 2653-2661.PubMedCentralCrossRefPubMed Ferguson B, Krippl B, Andrisani O, Jones N, Westphal H, Rosenberg M: E1A 13S and 12S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Mol Cell Biol 1985, 5: 2653-2661.PubMedCentralCrossRefPubMed
10.
go back to reference Li Y, Graham C, Lacy S, Duncan AM, Whyte P: The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev 1993, 7: 2366-2377. 10.1101/gad.7.12a.2366CrossRefPubMed Li Y, Graham C, Lacy S, Duncan AM, Whyte P: The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev 1993, 7: 2366-2377. 10.1101/gad.7.12a.2366CrossRefPubMed
11.
go back to reference Turnell AS, Mymryk JS: Roles for the coactivators CBP and p300 and the APC/C E3 ubiquitin ligase in E1A-dependent cell transformation. Br J Cancer 2006, 95: 555-560. 10.1038/sj.bjc.6603304PubMedCentralCrossRefPubMed Turnell AS, Mymryk JS: Roles for the coactivators CBP and p300 and the APC/C E3 ubiquitin ligase in E1A-dependent cell transformation. Br J Cancer 2006, 95: 555-560. 10.1038/sj.bjc.6603304PubMedCentralCrossRefPubMed
12.
go back to reference Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E: Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988, 334: 124-129. 10.1038/334124a0CrossRefPubMed Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E: Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988, 334: 124-129. 10.1038/334124a0CrossRefPubMed
13.
go back to reference Madison DL, Yaciuk P, Kwok RP, Lundblad JR: Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem 2002, 277: 38755-38763. 10.1074/jbc.M207512200CrossRefPubMed Madison DL, Yaciuk P, Kwok RP, Lundblad JR: Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem 2002, 277: 38755-38763. 10.1074/jbc.M207512200CrossRefPubMed
14.
go back to reference Fax P, Carlson CR, Collas P, Tasken K, Esche H, Brockmann D: Binding of PKA-RIIalpha to the Adenovirus E1A12S oncoprotein correlates with its nuclear translocation and an increase in PKA-dependent promoter activity. Virology 2001, 285: 30-41. 10.1006/viro.2001.0926CrossRefPubMed Fax P, Carlson CR, Collas P, Tasken K, Esche H, Brockmann D: Binding of PKA-RIIalpha to the Adenovirus E1A12S oncoprotein correlates with its nuclear translocation and an increase in PKA-dependent promoter activity. Virology 2001, 285: 30-41. 10.1006/viro.2001.0926CrossRefPubMed
15.
go back to reference Sang N, Severino A, Russo P, Baldi A, Giordano A, Mileo AM, Paggi MG, De Luca A: RACK1 interacts with E1A and rescues E1A-induced yeast growth inhibition and mammalian cell apoptosis. J Biol Chem 2001, 276: 27026-27033. 10.1074/jbc.M010346200CrossRefPubMed Sang N, Severino A, Russo P, Baldi A, Giordano A, Mileo AM, Paggi MG, De Luca A: RACK1 interacts with E1A and rescues E1A-induced yeast growth inhibition and mammalian cell apoptosis. J Biol Chem 2001, 276: 27026-27033. 10.1074/jbc.M010346200CrossRefPubMed
16.
go back to reference Severino A, Baldi A, Cottone G, Han M, Sang N, Giordano A, Mileo AM, Paggi MG, De Luca A: RACK1 is a functional target of the E1A oncoprotein. J Cell Physiol 2004, 199: 134-139. 10.1002/jcp.10448CrossRefPubMed Severino A, Baldi A, Cottone G, Han M, Sang N, Giordano A, Mileo AM, Paggi MG, De Luca A: RACK1 is a functional target of the E1A oncoprotein. J Cell Physiol 2004, 199: 134-139. 10.1002/jcp.10448CrossRefPubMed
17.
go back to reference Turnell AS, Grand RJ, Gorbea C, Zhang X, Wang W, Mymryk JS, Gallimore PH: Regulation of the 26S proteasome by adenovirus E1A. Embo J 2000, 19: 4759-4773. 10.1093/emboj/19.17.4759PubMedCentralCrossRefPubMed Turnell AS, Grand RJ, Gorbea C, Zhang X, Wang W, Mymryk JS, Gallimore PH: Regulation of the 26S proteasome by adenovirus E1A. Embo J 2000, 19: 4759-4773. 10.1093/emboj/19.17.4759PubMedCentralCrossRefPubMed
18.
go back to reference Casci T, Vinos J, Freeman M: Sprouty, an intracellular inhibitor of Ras signaling. Cell 1999, 96: 655-665. 10.1016/S0092-8674(00)80576-0CrossRefPubMed Casci T, Vinos J, Freeman M: Sprouty, an intracellular inhibitor of Ras signaling. Cell 1999, 96: 655-665. 10.1016/S0092-8674(00)80576-0CrossRefPubMed
19.
go back to reference Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA: sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 1998, 92: 253-263. 10.1016/S0092-8674(00)80919-8CrossRefPubMed Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA: sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 1998, 92: 253-263. 10.1016/S0092-8674(00)80919-8CrossRefPubMed
20.
go back to reference Kim HJ, Bar-Sagi D: Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 2004, 5: 441-450. 10.1038/nrm1400CrossRefPubMed Kim HJ, Bar-Sagi D: Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 2004, 5: 441-450. 10.1038/nrm1400CrossRefPubMed
21.
go back to reference Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N, Krasnow MA, Martin GR: Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 1999, 126: 4465-4475.PubMed Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N, Krasnow MA, Martin GR: Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 1999, 126: 4465-4475.PubMed
22.
go back to reference Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G: Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 2001, 152: 1087-1098. 10.1083/jcb.152.5.1087PubMedCentralCrossRefPubMed Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G: Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 2001, 152: 1087-1098. 10.1083/jcb.152.5.1087PubMedCentralCrossRefPubMed
23.
go back to reference Gross I, Bassit B, Benezra M, Licht JD: Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 2001, 276: 46460-46468. 10.1074/jbc.M108234200CrossRefPubMed Gross I, Bassit B, Benezra M, Licht JD: Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 2001, 276: 46460-46468. 10.1074/jbc.M108234200CrossRefPubMed
24.
go back to reference Chambers D, Mason I: Expression of sprouty2 during early development of the chick embryo is coincident with known sites of FGF signalling. Mech Dev 2000, 91: 361-364. 10.1016/S0925-4773(99)00288-9CrossRefPubMed Chambers D, Mason I: Expression of sprouty2 during early development of the chick embryo is coincident with known sites of FGF signalling. Mech Dev 2000, 91: 361-364. 10.1016/S0925-4773(99)00288-9CrossRefPubMed
25.
go back to reference Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR: Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 2006, 11: 181-190. 10.1016/j.devcel.2006.05.014PubMedCentralCrossRefPubMed Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR: Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 2006, 11: 181-190. 10.1016/j.devcel.2006.05.014PubMedCentralCrossRefPubMed
26.
go back to reference Guy GR, Wong ES, Yusoff P, Chandramouli S, Lo TL, Lim J, Fong CW: Sprouty: how does the branch manager work? J Cell Sci 2003, 116: 3061-3068. 10.1242/jcs.00652CrossRefPubMed Guy GR, Wong ES, Yusoff P, Chandramouli S, Lo TL, Lim J, Fong CW: Sprouty: how does the branch manager work? J Cell Sci 2003, 116: 3061-3068. 10.1242/jcs.00652CrossRefPubMed
27.
go back to reference Tefft JD, Lee M, Smith S, Leinwand M, Zhao J, Bringas P Jr, Crowe DL, Warburton D: Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr Biol 1999, 9: 219-222. 10.1016/S0960-9822(99)80094-3CrossRefPubMed Tefft JD, Lee M, Smith S, Leinwand M, Zhao J, Bringas P Jr, Crowe DL, Warburton D: Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr Biol 1999, 9: 219-222. 10.1016/S0960-9822(99)80094-3CrossRefPubMed
28.
go back to reference Hanafusa H, Torii S, Yasunaga T, Nishida E: Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 2002, 4: 850-858. 10.1038/ncb867CrossRefPubMed Hanafusa H, Torii S, Yasunaga T, Nishida E: Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 2002, 4: 850-858. 10.1038/ncb867CrossRefPubMed
29.
go back to reference Lim J, Yusoff P, Wong ES, Chandramouli S, Lao DH, Fong CW, Guy GR: The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol Cell Biol 2002, 22: 7953-7966. 10.1128/MCB.22.22.7953-7966.2002PubMedCentralCrossRefPubMed Lim J, Yusoff P, Wong ES, Chandramouli S, Lao DH, Fong CW, Guy GR: The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol Cell Biol 2002, 22: 7953-7966. 10.1128/MCB.22.22.7953-7966.2002PubMedCentralCrossRefPubMed
30.
go back to reference Fong CW, Leong HF, Wong ES, Lim J, Yusoff P, Guy GR: Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem 2003, 278: 33456-33464. 10.1074/jbc.M301317200CrossRefPubMed Fong CW, Leong HF, Wong ES, Lim J, Yusoff P, Guy GR: Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem 2003, 278: 33456-33464. 10.1074/jbc.M301317200CrossRefPubMed
31.
go back to reference Mason JM, Morrison DJ, Bassit B, Dimri M, Band H, Licht JD, Gross I: Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol Biol Cell 2004, 15: 2176-2188. 10.1091/mbc.E03-07-0503PubMedCentralCrossRefPubMed Mason JM, Morrison DJ, Bassit B, Dimri M, Band H, Licht JD, Gross I: Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol Biol Cell 2004, 15: 2176-2188. 10.1091/mbc.E03-07-0503PubMedCentralCrossRefPubMed
32.
go back to reference Hanafusa H, Torii S, Yasunaga T, Matsumoto K, Nishida E: Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J Biol Chem 2004, 279: 22992-22995. 10.1074/jbc.M312498200CrossRefPubMed Hanafusa H, Torii S, Yasunaga T, Matsumoto K, Nishida E: Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J Biol Chem 2004, 279: 22992-22995. 10.1074/jbc.M312498200CrossRefPubMed
33.
go back to reference Tefft D, Lee M, Smith S, Crowe DL, Bellusci S, Warburton D: mSprouty2 inhibits FGF10-activated MAP kinase by differentially binding to upstream target proteins. Am J Physiol Lung Cell Mol Physiol 2002, 283: L700-706.CrossRefPubMed Tefft D, Lee M, Smith S, Crowe DL, Bellusci S, Warburton D: mSprouty2 inhibits FGF10-activated MAP kinase by differentially binding to upstream target proteins. Am J Physiol Lung Cell Mol Physiol 2002, 283: L700-706.CrossRefPubMed
34.
go back to reference Lo TL, Yusoff P, Fong CW, Guo K, McCaw BJ, Phillips WA, Yang H, Wong ES, Leong HF, Zeng Q, et al.: The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res 2004, 64: 6127-6136. 10.1158/0008-5472.CAN-04-1207CrossRefPubMed Lo TL, Yusoff P, Fong CW, Guo K, McCaw BJ, Phillips WA, Yang H, Wong ES, Leong HF, Zeng Q, et al.: The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res 2004, 64: 6127-6136. 10.1158/0008-5472.CAN-04-1207CrossRefPubMed
35.
go back to reference Kwabi-Addo B, Wang J, Erdem H, Vaid A, Castro P, Ayala G, Ittmann M: The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res 2004, 64: 4728-4735. 10.1158/0008-5472.CAN-03-3759CrossRefPubMed Kwabi-Addo B, Wang J, Erdem H, Vaid A, Castro P, Ayala G, Ittmann M: The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res 2004, 64: 4728-4735. 10.1158/0008-5472.CAN-03-3759CrossRefPubMed
36.
go back to reference Bloethner S, Chen B, Hemminki K, Muller-Berghaus J, Ugurel S, Schadendorf D, Kumar R: Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 2005, 26: 1224-1232.CrossRefPubMed Bloethner S, Chen B, Hemminki K, Muller-Berghaus J, Ugurel S, Schadendorf D, Kumar R: Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 2005, 26: 1224-1232.CrossRefPubMed
37.
go back to reference Sutterluty H, Mayer CE, Setinek U, Attems J, Ovtcharov S, Mikula M, Mikulits W, Micksche M, Berger W: Down-regulation of Sprouty2 in non-small cell lung cancer contributes to tumor malignancy via extracellular signal-regulated kinase pathway-dependent and -independent mechanisms. Mol Cancer Res 2007, 5: 509-520. 10.1158/1541-7786.MCR-06-0273CrossRefPubMed Sutterluty H, Mayer CE, Setinek U, Attems J, Ovtcharov S, Mikula M, Mikulits W, Micksche M, Berger W: Down-regulation of Sprouty2 in non-small cell lung cancer contributes to tumor malignancy via extracellular signal-regulated kinase pathway-dependent and -independent mechanisms. Mol Cancer Res 2007, 5: 509-520. 10.1158/1541-7786.MCR-06-0273CrossRefPubMed
38.
go back to reference Fong CW, Chua MS, McKie AB, Ling SH, Mason V, Li R, Yusoff P, Lo TL, Leung HY, So SK, Guy GR: Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res 2006, 66: 2048-2058. 10.1158/0008-5472.CAN-05-1072CrossRefPubMed Fong CW, Chua MS, McKie AB, Ling SH, Mason V, Li R, Yusoff P, Lo TL, Leung HY, So SK, Guy GR: Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res 2006, 66: 2048-2058. 10.1158/0008-5472.CAN-05-1072CrossRefPubMed
39.
go back to reference King JA, Straffon AF, D'Abaco GM, Poon CL, I ST, Smith CM, Buchert M, Corcoran NM, Hall NE, Callus BA, et al.: Distinct requirements for the Sprouty domain for functional activity of Spred proteins. Biochem J 2005, 388: 445-454. 10.1042/BJ20041284PubMedCentralCrossRefPubMed King JA, Straffon AF, D'Abaco GM, Poon CL, I ST, Smith CM, Buchert M, Corcoran NM, Hall NE, Callus BA, et al.: Distinct requirements for the Sprouty domain for functional activity of Spred proteins. Biochem J 2005, 388: 445-454. 10.1042/BJ20041284PubMedCentralCrossRefPubMed
40.
go back to reference Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A: Spred is a Sprouty-related suppressor of Ras signalling. Nature 2001, 412: 647-651. 10.1038/35088082CrossRefPubMed Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A: Spred is a Sprouty-related suppressor of Ras signalling. Nature 2001, 412: 647-651. 10.1038/35088082CrossRefPubMed
41.
go back to reference Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR: Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci USA 1992, 89: 4549-4553. 10.1073/pnas.89.10.4549PubMedCentralCrossRefPubMed Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR: Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci USA 1992, 89: 4549-4553. 10.1073/pnas.89.10.4549PubMedCentralCrossRefPubMed
42.
go back to reference Dyson N, Guida P, Munger K, Harlow E: Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol 1992, 66: 6893-6902.PubMedCentralPubMed Dyson N, Guida P, Munger K, Harlow E: Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol 1992, 66: 6893-6902.PubMedCentralPubMed
44.
go back to reference Kitabayashi I, Chiu R, Gachelin G, Yokoyama K: E1A dependent up-regulation of c-jun/AP-1 activity. Nucleic Acids Res 1991, 19: 649-655. 10.1093/nar/19.3.649PubMedCentralCrossRefPubMed Kitabayashi I, Chiu R, Gachelin G, Yokoyama K: E1A dependent up-regulation of c-jun/AP-1 activity. Nucleic Acids Res 1991, 19: 649-655. 10.1093/nar/19.3.649PubMedCentralCrossRefPubMed
45.
go back to reference Rubin C, Zwang Y, Vaisman N, Ron D, Yarden Y: Phosphorylation of carboxyl-terminal tyrosines modulates the specificity of Sprouty-2 inhibition of different signaling pathways. J Biol Chem 2005, 280: 9735-9744.CrossRefPubMed Rubin C, Zwang Y, Vaisman N, Ron D, Yarden Y: Phosphorylation of carboxyl-terminal tyrosines modulates the specificity of Sprouty-2 inhibition of different signaling pathways. J Biol Chem 2005, 280: 9735-9744.CrossRefPubMed
46.
go back to reference Berk AJ: Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 2005, 24: 7673-7685. 10.1038/sj.onc.1209040CrossRefPubMed Berk AJ: Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 2005, 24: 7673-7685. 10.1038/sj.onc.1209040CrossRefPubMed
47.
go back to reference Tsumura Y, Toshima J, Leeksma OC, Ohashi K, Mizuno K: Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem J 2005, 387: 627-637. 10.1042/BJ20041181PubMedCentralCrossRefPubMed Tsumura Y, Toshima J, Leeksma OC, Ohashi K, Mizuno K: Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem J 2005, 387: 627-637. 10.1042/BJ20041181PubMedCentralCrossRefPubMed
48.
go back to reference Edwin F, Anderson K, Ying C, Patel TB: Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 2009, 76: 679-691. 10.1124/mol.109.055848PubMedCentralCrossRefPubMed Edwin F, Anderson K, Ying C, Patel TB: Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 2009, 76: 679-691. 10.1124/mol.109.055848PubMedCentralCrossRefPubMed
49.
go back to reference Hall AB, Jura N, DaSilva J, Jang YJ, Gong D, Bar-Sagi D: hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr Biol 2003, 13: 308-314. 10.1016/S0960-9822(03)00086-1CrossRefPubMed Hall AB, Jura N, DaSilva J, Jang YJ, Gong D, Bar-Sagi D: hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr Biol 2003, 13: 308-314. 10.1016/S0960-9822(03)00086-1CrossRefPubMed
Metadata
Title
Sprouty is a cytoplasmic target of adenoviral E1A oncoproteins to regulate the receptor tyrosine kinase signalling pathway
Authors
Angelika Zaremba
Ursula Schmuecker
Helmut Esche
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2011
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-8-192

Other articles of this Issue 1/2011

Virology Journal 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.