Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2017

Open Access 01-12-2017 | Research

Lucerastat, an iminosugar with potential as substrate reduction therapy for glycolipid storage disorders: safety, tolerability, and pharmacokinetics in healthy subjects

Authors: N. Guérard, O. Morand, J. Dingemanse

Published in: Orphanet Journal of Rare Diseases | Issue 1/2017

Login to get access

Abstract

Background

Lucerastat, an inhibitor of glucosylceramide synthase, has the potential to restore the balance between synthesis and degradation of glycosphingolipids in glycolipid storage disorders such as Gaucher disease and Fabry disease. The safety, tolerability, and pharmacokinetics of oral lucerastat were evaluated in two separate randomized, double-blind, placebo-controlled, single- and multiple-ascending dose studies (SAD and MAD, respectively) in healthy male subjects.

Methods

In the SAD study, 31 subjects received placebo or a single oral dose of 100, 300, 500, or 1000 mg lucerastat. Eight additional subjects received two doses of 1000 mg lucerastat or placebo separated by 12 h. In the MAD study, 37 subjects received placebo or 200, 500, or 1000 mg b.i.d. lucerastat for 7 consecutive days. Six subjects in the 500 mg cohort received lucerastat in both absence and presence of food.

Results

In the SAD study, 15 adverse events (AEs) were reported in ten subjects. Eighteen AEs were reported in 15 subjects in the MAD study, in which the 500 mg dose cohort was repeated because of elevated alanine aminotransferase (ALT) values in 4 subjects, not observed in other dose cohorts. No severe or serious AE was observed. No clinically relevant abnormalities regarding vital signs and 12–lead electrocardiograms were observed. Lucerastat Cmax values were comparable between studies, with geometric mean Cmax 10.5 (95% CI: 7.5, 14.7) and 11.1 (95% CI: 8.7, 14.2) μg/mL in the SAD and MAD study, respectively, after 1000 mg lucerastat b.i.d. tmax (0.5 – 4 h) and t1/2 (3.6 – 8.1 h) were also within the same range across dose groups in both studies. Using the Gough power model, dose proportionality was confirmed in the SAD study for Cmax and AUC0–∞, and for AUC0–12 in the MAD study. Fed-to-fasted geometric mean ratio for AUC0–12 was 0.93 (90% CI: 0.80, 1.07) and tmax was the same with or without food, indicating no food effect.

Conclusions

Incidence of drug-related AEs did not increase with dose. No serious AEs were reported for any subject. Overall, lucerastat was well tolerated. These results warrant further investigation of substrate reduction therapy with lucerastat in patients with glycolipid storage disorders.
SAD study was registered on clinicaltrials.gov under the identifier NCT02944487 on the 24th of October 2016 (retrospectively registered). MAD study was registered on clinicaltrials.gov under the identifier NCT02944474 on the 25th of October 2016 (retrospectively registered).

Trial registration

A Study to Assess the Safety and Tolerability of Lucerastat in Subjects With Fabry Disease. Clinicaltrials.gov: NCT02930655.
Literature
1.
go back to reference Klein AD, Futerman AH. Lysosomal storage disorders: old diseases, present and future challenges. Pediatr Endocrinol Rev. 2013;11 Suppl 1:59–63.PubMed Klein AD, Futerman AH. Lysosomal storage disorders: old diseases, present and future challenges. Pediatr Endocrinol Rev. 2013;11 Suppl 1:59–63.PubMed
3.
go back to reference Cox TM, Amato D, Hollak CE, Luzy C, Silkey M, Giorgino R, Steiner RD, Miglustat Maintenance Study G. Evaluation of miglustat as maintenance therapy after enzyme therapy in adults with stable type 1 Gaucher disease: a prospective, open-label non-inferiority study. Orphanet J Rare Dis. 2012;7:102. doi:10.1186/1750-1172-7-102.CrossRefPubMedPubMedCentral Cox TM, Amato D, Hollak CE, Luzy C, Silkey M, Giorgino R, Steiner RD, Miglustat Maintenance Study G. Evaluation of miglustat as maintenance therapy after enzyme therapy in adults with stable type 1 Gaucher disease: a prospective, open-label non-inferiority study. Orphanet J Rare Dis. 2012;7:102. doi:10.​1186/​1750-1172-7-102.CrossRefPubMedPubMedCentral
4.
go back to reference Elstein D, Hollak C, Aerts JM, van Weely S, Maas M, Cox TM, Lachmann RH, Hrebicek M, Platt FM, Butters TD, Dwek RA, Zimran A. Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. J Inherit Metab Dis. 2004;27(6):757–66. doi:10.1023/B:BOLI.0000045756.54006.17.CrossRefPubMed Elstein D, Hollak C, Aerts JM, van Weely S, Maas M, Cox TM, Lachmann RH, Hrebicek M, Platt FM, Butters TD, Dwek RA, Zimran A. Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. J Inherit Metab Dis. 2004;27(6):757–66. doi:10.​1023/​B:​BOLI.​0000045756.​54006.​17.CrossRefPubMed
5.
go back to reference Lachmann RH, te Vruchte D, Lloyd-Evans E, Reinkensmeier G, Sillence DJ, Fernandez-Guillen L, Dwek RA, Butters TD, Cox TM, Platt FM. Treatment with miglustat reverses the lipid-trafficking defect in Niemann-Pick disease type C. Neurobiol Dis. 2004;16(3):654–8. doi:10.1016/j.nbd.2004.05.002.CrossRefPubMed Lachmann RH, te Vruchte D, Lloyd-Evans E, Reinkensmeier G, Sillence DJ, Fernandez-Guillen L, Dwek RA, Butters TD, Cox TM, Platt FM. Treatment with miglustat reverses the lipid-trafficking defect in Niemann-Pick disease type C. Neurobiol Dis. 2004;16(3):654–8. doi:10.​1016/​j.​nbd.​2004.​05.​002.CrossRefPubMed
9.
go back to reference Platt FM, Neises GR, Karlsson GB, Dwek RA, Butters TD. N-butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect N-linked oligosaccharide processing. J Biol Chem. 1994;269(43):27108–14.PubMed Platt FM, Neises GR, Karlsson GB, Dwek RA, Butters TD. N-butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect N-linked oligosaccharide processing. J Biol Chem. 1994;269(43):27108–14.PubMed
10.
go back to reference Andersson U, Butters TD, Dwek RA, Platt FM. N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem Pharmacol. 2000;59(7):821–9.CrossRefPubMed Andersson U, Butters TD, Dwek RA, Platt FM. N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem Pharmacol. 2000;59(7):821–9.CrossRefPubMed
11.
12.
go back to reference Andersson U, Smith D, Jeyakumar M, Butters TD, Borja MC, Dwek RA, Platt FM. Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol Dis. 2004;16(3):506–15. doi:10.1016/j.nbd.2004.04.012.CrossRefPubMed Andersson U, Smith D, Jeyakumar M, Butters TD, Borja MC, Dwek RA, Platt FM. Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol Dis. 2004;16(3):506–15. doi:10.​1016/​j.​nbd.​2004.​04.​012.CrossRefPubMed
14.
go back to reference Administration UFaD. Guidance for industry: food-effect bioavailability and fed bioequivalence studies. 2002. Administration UFaD. Guidance for industry: food-effect bioavailability and fed bioequivalence studies. 2002.
15.
go back to reference Remenova T, Morand O, Amato D, Chadha-Boreham H, Tsurutani S, Marquardt T. A double-blind, randomized, placebo-controlled trial studying the effects of Saccharomyces boulardii on the gastrointestinal tolerability, safety, and pharmacokinetics of miglustat. Orphanet J Rare Dis. 2015;10:81. doi:10.1186/s13023-015-0297-7.CrossRefPubMedPubMedCentral Remenova T, Morand O, Amato D, Chadha-Boreham H, Tsurutani S, Marquardt T. A double-blind, randomized, placebo-controlled trial studying the effects of Saccharomyces boulardii on the gastrointestinal tolerability, safety, and pharmacokinetics of miglustat. Orphanet J Rare Dis. 2015;10:81. doi:10.​1186/​s13023-015-0297-7.CrossRefPubMedPubMedCentral
16.
go back to reference Gough K, Hutchison M, Keene O, Byrom B, Ellis S, Lacey L, McKellar J. Assessment of dose proportionality: report from the statisticians in the pharmaceutical industry/pharmacokinetics UK joint working party. Drug Inf J. 1995;29(3):1039–48. doi:10.1177/009286159502900324. Gough K, Hutchison M, Keene O, Byrom B, Ellis S, Lacey L, McKellar J. Assessment of dose proportionality: report from the statisticians in the pharmaceutical industry/pharmacokinetics UK joint working party. Drug Inf J. 1995;29(3):1039–48. doi:10.​1177/​0092861595029003​24.
17.
go back to reference Smith BP, Vandenhende FR, DeSante KA, Farid NA, Welch PA, Callaghan JT, Forgue ST. Confidence interval criteria for assessment of dose proportionality. Pharm Res. 2000;17(10):1278–83.CrossRefPubMed Smith BP, Vandenhende FR, DeSante KA, Farid NA, Welch PA, Callaghan JT, Forgue ST. Confidence interval criteria for assessment of dose proportionality. Pharm Res. 2000;17(10):1278–83.CrossRefPubMed
21.
go back to reference Guérard N, Oder D, Nordbeck P, Zwingelstein C, Morand O, Welford R, Dingemanse J, Wanner C. Lucerastat, an iminosugar for substrate reduction therapy: safety, tolerability, pharmacodynamics, and pharmacokinetics in adult subjects with Fabry disease. WORLDSymposium, Abstract number 17-A-247. 2017. Guérard N, Oder D, Nordbeck P, Zwingelstein C, Morand O, Welford R, Dingemanse J, Wanner C. Lucerastat, an iminosugar for substrate reduction therapy: safety, tolerability, pharmacodynamics, and pharmacokinetics in adult subjects with Fabry disease. WORLDSymposium, Abstract number 17-A-247. 2017.
Metadata
Title
Lucerastat, an iminosugar with potential as substrate reduction therapy for glycolipid storage disorders: safety, tolerability, and pharmacokinetics in healthy subjects
Authors
N. Guérard
O. Morand
J. Dingemanse
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2017
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-017-0565-9

Other articles of this Issue 1/2017

Orphanet Journal of Rare Diseases 1/2017 Go to the issue