Skip to main content
Top
Published in: European Spine Journal 4/2004

01-07-2004 | Original Article

Spinal fusion using an autologous growth factor gel and a porous resorbable ceramic

Authors: William R. Walsh, Andreas Loefler, Sean Nicklin, Doug Arm, Ralph E. Stanford, Yan Yu, Richard Harris, R. M. Gillies

Published in: European Spine Journal | Issue 4/2004

Login to get access

Abstract

Augmenting healing through a single application of an exogenous growth factor or bone morphogenetic protein is not a new concept. The use of autologous growth factors through platelet isolation and concentration provides multiple endogenous growth factors to the healing site. A posterolateral fusion model in aged sheep (5- to 6-year-old ewes) was used to examine the effects of the addition of growth factors through autologous platelet isolation on the biomechanic and histologic properties of the fusion using a resorbable coral bone graft substitute. At 6 months the combination of autologous growth factors to the Pro Osteon 500R plus aspirated bone marrow resulted in the greatest bending stiffness but not ultimate load. Autologous growth factors can be isolated from platelets and concentrated to provide multiple growth factors to the fusion site to aid in spinal fusion.
Literature
1.
go back to reference Anitua E (1999) Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants 14(4):529–535PubMed Anitua E (1999) Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants 14(4):529–535PubMed
2.
go back to reference Banks RE, Forbes MA, Kinsey SE, Stanley A, Ingham E, Walters C, Selby PJ (1998) Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology. Br J Cancer 77(6):956–964PubMed Banks RE, Forbes MA, Kinsey SE, Stanley A, Ingham E, Walters C, Selby PJ (1998) Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology. Br J Cancer 77(6):956–964PubMed
3.
go back to reference Baramki HG, Steffen T, Lander P, Chang M, Marchesi D (2000) The efficacy of interconnected porous hydroxyapatite in achieving posterolateral lumbar fusion in sheep. Spine 25(9):1053–1060CrossRefPubMed Baramki HG, Steffen T, Lander P, Chang M, Marchesi D (2000) The efficacy of interconnected porous hydroxyapatite in achieving posterolateral lumbar fusion in sheep. Spine 25(9):1053–1060CrossRefPubMed
4.
go back to reference Boden SD, Martin GJ Jr, Morone MA, Ugbo JL, Moskovitz PA (1999) Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Spine 24(12):1179–1185CrossRefPubMed Boden SD, Martin GJ Jr, Morone MA, Ugbo JL, Moskovitz PA (1999) Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Spine 24(12):1179–1185CrossRefPubMed
5.
go back to reference Boden SD, Martin GJ Jr, Morone MA, Ugbo JL, Titus L, Hutton WC (1999) The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine 24(4):320–327CrossRefPubMed Boden SD, Martin GJ Jr, Morone MA, Ugbo JL, Titus L, Hutton WC (1999) The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine 24(4):320–327CrossRefPubMed
6.
go back to reference Boden SD, Schimandle JH (1995) Biologic enhancement of spinal fusion. Spine 20 [Suppl 24]:113S–123S Boden SD, Schimandle JH (1995) Biologic enhancement of spinal fusion. Spine 20 [Suppl 24]:113S–123S
7.
go back to reference Boden SD, Schimandle JH, Hutton WC (1995) 1995 Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. II. Study of dose, carrier, and species. Spine 20(24):2633–2644PubMed Boden SD, Schimandle JH, Hutton WC (1995) 1995 Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. II. Study of dose, carrier, and species. Spine 20(24):2633–2644PubMed
8.
go back to reference Boden SD, Titus L, Hair G, Liu Y, Viggeswarapu M, Nanes MS, Baranowski C (1998) Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 23(23):2486–2492CrossRefPubMed Boden SD, Titus L, Hair G, Liu Y, Viggeswarapu M, Nanes MS, Baranowski C (1998) Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 23(23):2486–2492CrossRefPubMed
9.
go back to reference Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200(2):165–170PubMed Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200(2):165–170PubMed
10.
go back to reference Boo JS, Yamada Y, Okazaki Y, Hibino Y, Okada K, Hata K, Yoshikawa T, Sugiura Y, Ueda M (2002) Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg 13(2):231–239; discussion 240–243CrossRefPubMed Boo JS, Yamada Y, Okazaki Y, Hibino Y, Okada K, Hata K, Yoshikawa T, Sugiura Y, Ueda M (2002) Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg 13(2):231–239; discussion 240–243CrossRefPubMed
11.
go back to reference Bozic KJ, Glazer PA, Zurakowski D, Simon BJ, Lipson SJ, Hayes WC (1999) In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine 24(20):2127–2133CrossRefPubMed Bozic KJ, Glazer PA, Zurakowski D, Simon BJ, Lipson SJ, Hayes WC (1999) In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine 24(20):2127–2133CrossRefPubMed
12.
go back to reference Canalis E (1985) Effect of growth factors on bone cell replication and differentiation. Clin Orthop 193:246–263PubMed Canalis E (1985) Effect of growth factors on bone cell replication and differentiation. Clin Orthop 193:246–263PubMed
13.
go back to reference Cook SD, Dalton JE, Tan EH, Whitecloud TS 3rd, Rueger DC (1994) In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions. Spine 19(15):1655–1663PubMed Cook SD, Dalton JE, Tan EH, Whitecloud TS 3rd, Rueger DC (1994) In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions. Spine 19(15):1655–1663PubMed
14.
go back to reference Cook SD, Rueger DC (1996) Osteogenic protein-1: biology and applications. Clin Orthop 324:29–38PubMed Cook SD, Rueger DC (1996) Osteogenic protein-1: biology and applications. Clin Orthop 324:29–38PubMed
15.
go back to reference Dong J, Kojima H, Uemura T, Kikuchi M, Tateishi T, Tanaka J (2001) In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells. J Biomed Mater Res 57(2):208–216CrossRefPubMed Dong J, Kojima H, Uemura T, Kikuchi M, Tateishi T, Tanaka J (2001) In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells. J Biomed Mater Res 57(2):208–216CrossRefPubMed
16.
go back to reference Dong J, Uemura T, Kikuchi M, Tanaka J, Tateishi T (2002) Long-term durability of porous hydroxyapatite with low-pressure system to support osteogenesis of mesenchymal stem cells. Biomed Mater Eng 12(2):203–209PubMed Dong J, Uemura T, Kikuchi M, Tanaka J, Tateishi T (2002) Long-term durability of porous hydroxyapatite with low-pressure system to support osteogenesis of mesenchymal stem cells. Biomed Mater Eng 12(2):203–209PubMed
17.
go back to reference Dong J, Uemura T, Shirasaki Y, Tateishi T (2002) Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 23(23):4493–4502CrossRefPubMed Dong J, Uemura T, Shirasaki Y, Tateishi T (2002) Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 23(23):4493–4502CrossRefPubMed
18.
go back to reference Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop 355 [Suppl]:S7–21 Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop 355 [Suppl]:S7–21
19.
go back to reference Erbe EM, Marx JG, Clineff TD, Bellincampi LD (2001) Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J 10 [Suppl 2]:S141–146 Erbe EM, Marx JG, Clineff TD, Bellincampi LD (2001) Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J 10 [Suppl 2]:S141–146
20.
go back to reference Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3(1):1–8PubMed Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3(1):1–8PubMed
21.
go back to reference Glazer PA, Heilmann MR, Lotz JC, Bradford DS (1998) Use of ultrasound in spinal arthrodesis. A rabbit model. Spine 23(10):1142–1148CrossRefPubMed Glazer PA, Heilmann MR, Lotz JC, Bradford DS (1998) Use of ultrasound in spinal arthrodesis. A rabbit model. Spine 23(10):1142–1148CrossRefPubMed
22.
go back to reference Gombotz WR, Pankey SC, Bouchard LS, Phan DH, Puolakkainen PA (1994) Stimulation of bone healing by transforming growth factor-beta 1 released from polymeric or ceramic implants. J Appl Biomater 5(2):141–150PubMed Gombotz WR, Pankey SC, Bouchard LS, Phan DH, Puolakkainen PA (1994) Stimulation of bone healing by transforming growth factor-beta 1 released from polymeric or ceramic implants. J Appl Biomater 5(2):141–150PubMed
23.
go back to reference Grauer JN, Patel TC, Erulkar JS, Troiano NW, Panjabi MM, Friedlaender GE (2001) 2000 Young Investigator Research Award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 26(2):127–133CrossRefPubMed Grauer JN, Patel TC, Erulkar JS, Troiano NW, Panjabi MM, Friedlaender GE (2001) 2000 Young Investigator Research Award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 26(2):127–133CrossRefPubMed
24.
go back to reference Guigui P, Plais PY, Flautre B, Viguier E, Blary MC, Chopin D, Lavaste F, Hardouin P (1994) Experimental model of posterolateral spinal arthrodesis in sheep. Part 2. Application of the model: evaluation of vertebral fusion obtained with coral (Porites) or with a biphasic ceramic (Triosite). Spine 19(24):2798–2803PubMed Guigui P, Plais PY, Flautre B, Viguier E, Blary MC, Chopin D, Lavaste F, Hardouin P (1994) Experimental model of posterolateral spinal arthrodesis in sheep. Part 2. Application of the model: evaluation of vertebral fusion obtained with coral (Porites) or with a biphasic ceramic (Triosite). Spine 19(24):2798–2803PubMed
25.
go back to reference Guigui P, Plais PY, Flautre B, Viguier E, Blary MC, Sales De Gauzy J, Chopin D, Lavaste F, Hardouin P (1994) Experimental model of posterolateral spinal arthrodesis in sheep. Part 1. Experimental procedures and results with autologous bone graft. Spine 19(24):2791–2797PubMed Guigui P, Plais PY, Flautre B, Viguier E, Blary MC, Sales De Gauzy J, Chopin D, Lavaste F, Hardouin P (1994) Experimental model of posterolateral spinal arthrodesis in sheep. Part 1. Experimental procedures and results with autologous bone graft. Spine 19(24):2791–2797PubMed
26.
go back to reference Helm GA, Sheehan JM, Sheehan JP, Jane JA Jr, diPierro CG, Simmons NE, Gillies GT, Kallmes DF, Sweeney TM (1997) Utilization of type I collagen gel, demineralized bone matrix, and bone morphogenetic protein-2 to enhance autologous bone lumbar spinal fusion. J Neurosurg 86(1):93–100PubMed Helm GA, Sheehan JM, Sheehan JP, Jane JA Jr, diPierro CG, Simmons NE, Gillies GT, Kallmes DF, Sweeney TM (1997) Utilization of type I collagen gel, demineralized bone matrix, and bone morphogenetic protein-2 to enhance autologous bone lumbar spinal fusion. J Neurosurg 86(1):93–100PubMed
27.
go back to reference Holmes RE (1979) Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 63(5):626–633PubMed Holmes RE (1979) Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 63(5):626–633PubMed
28.
go back to reference Ito M, Fay LA, Ito Y, Yuan MR, Edwards WT, Yuan HA (1997) The effect of pulsed electromagnetic fields on instrumented posterolateral spinal fusion and device-related stress shielding. Spine 22(4):382–388CrossRefPubMed Ito M, Fay LA, Ito Y, Yuan MR, Edwards WT, Yuan HA (1997) The effect of pulsed electromagnetic fields on instrumented posterolateral spinal fusion and device-related stress shielding. Spine 22(4):382–388CrossRefPubMed
29.
go back to reference Joyce ME, Terek RM, Jingushi S, Bolander ME (1990) Role of transforming growth factor-beta in fracture repair. Ann N Y Acad Sci 593:107–123PubMed Joyce ME, Terek RM, Jingushi S, Bolander ME (1990) Role of transforming growth factor-beta in fracture repair. Ann N Y Acad Sci 593:107–123PubMed
30.
go back to reference Kahanovitz N, Arnoczky SP, Nemzek J, Shores A (1994) The effect of electromagnetic pulsing on posterior lumbar spinal fusions in dogs. Spine 19(6):705–709PubMed Kahanovitz N, Arnoczky SP, Nemzek J, Shores A (1994) The effect of electromagnetic pulsing on posterior lumbar spinal fusions in dogs. Spine 19(6):705–709PubMed
31.
go back to reference Kasperk CH, Wergedal JE, Mohan S, Long DL, Lau KH, Baylink DJ (1990) Interactions of growth factors present in bone matrix with bone cells: effects on DNA synthesis and alkaline phosphatase. Growth Factors 3(2):147–158PubMed Kasperk CH, Wergedal JE, Mohan S, Long DL, Lau KH, Baylink DJ (1990) Interactions of growth factors present in bone matrix with bone cells: effects on DNA synthesis and alkaline phosphatase. Growth Factors 3(2):147–158PubMed
32.
go back to reference Kassolis JD, Rosen PS, Reynolds MA (2000) Alveolar ridge and sinus augmentation utilizing platelet-rich plasma in combination with freeze-dried bone allograft: case series. J Periodontol 71(10):1654–1661PubMed Kassolis JD, Rosen PS, Reynolds MA (2000) Alveolar ridge and sinus augmentation utilizing platelet-rich plasma in combination with freeze-dried bone allograft: case series. J Periodontol 71(10):1654–1661PubMed
33.
go back to reference Kiritsy CP, Lynch AB, Lynch SE (1993) Role of growth factors in cutaneous wound healing: a review. Crit Rev Oral Biol Med 4(5):729–760PubMed Kiritsy CP, Lynch AB, Lynch SE (1993) Role of growth factors in cutaneous wound healing: a review. Crit Rev Oral Biol Med 4(5):729–760PubMed
34.
go back to reference Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85(6):638–646PubMed Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85(6):638–646PubMed
35.
go back to reference Muschler GF, Hyodo A, Manning T, Kambic H, Easley K (1994) Evaluation of human bone morphogenetic protein 2 in a canine spinal fusion model. Clin Orthop 308:229–240PubMed Muschler GF, Hyodo A, Manning T, Kambic H, Easley K (1994) Evaluation of human bone morphogenetic protein 2 in a canine spinal fusion model. Clin Orthop 308:229–240PubMed
36.
go back to reference Muschler GF, Negami S, Hyodo A, Gaisser D, Easley K, Kambic H (1996) Evaluation of collagen ceramic composite graft materials in a spinal fusion model. Clin Orthop 328: 250–260PubMed Muschler GF, Negami S, Hyodo A, Gaisser D, Easley K, Kambic H (1996) Evaluation of collagen ceramic composite graft materials in a spinal fusion model. Clin Orthop 328: 250–260PubMed
37.
go back to reference Nanu A, Taneja N, Sood SK (1980) Preparation and standardisation of platelet rich plasma and platelet concentrates in a developing blood bank. Indian J Med Res 71:661–7PubMed Nanu A, Taneja N, Sood SK (1980) Preparation and standardisation of platelet rich plasma and platelet concentrates in a developing blood bank. Indian J Med Res 71:661–7PubMed
38.
go back to reference Noshi T, Yoshikawa T, Dohi Y, Ikeuchi M, Horiuchi K, Ichijima K, Sugimura M, Yonemasu K, Ohgushi H (2001) Recombinant human bone morphogenetic protein-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites. Artif Organs 25(3):201–208CrossRefPubMed Noshi T, Yoshikawa T, Dohi Y, Ikeuchi M, Horiuchi K, Ichijima K, Sugimura M, Yonemasu K, Ohgushi H (2001) Recombinant human bone morphogenetic protein-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites. Artif Organs 25(3):201–208CrossRefPubMed
39.
go back to reference Ohgushi H, Okumura M, Tamai S, Shors EC, Caplan A (1990) Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 24(12):1563–1570PubMed Ohgushi H, Okumura M, Tamai S, Shors EC, Caplan A (1990) Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 24(12):1563–1570PubMed
40.
go back to reference Reiss RF, Katz AJ (1976) Optimizing recovery of platelets in platelet rich plasma by the simplex strategy. Transfusion 16(4):370–374PubMed Reiss RF, Katz AJ (1976) Optimizing recovery of platelets in platelet rich plasma by the simplex strategy. Transfusion 16(4):370–374PubMed
41.
go back to reference Sartoris DJ, Holmes RE, Bucholz RW, Mooney V, Resnick D (1987) Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation. Invest Radiol 22(7):590–596PubMed Sartoris DJ, Holmes RE, Bucholz RW, Mooney V, Resnick D (1987) Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation. Invest Radiol 22(7):590–596PubMed
42.
go back to reference Shors EC (1999) Coralline bone graft substitutes. Orthop Clin North Am 30(4):599–613PubMed Shors EC (1999) Coralline bone graft substitutes. Orthop Clin North Am 30(4):599–613PubMed
43.
go back to reference Walsh WR, Harrison J, Loefler A, Martin T, Van Sickle D, Brown MK, Sonnabend DH (2000) Mechanical and histologic evaluation of Collagraft in an ovine lumbar fusion model. Clin Orthop 375:258–266CrossRefPubMed Walsh WR, Harrison J, Loefler A, Martin T, Van Sickle D, Brown MK, Sonnabend DH (2000) Mechanical and histologic evaluation of Collagraft in an ovine lumbar fusion model. Clin Orthop 375:258–266CrossRefPubMed
44.
go back to reference Whitman DH, Berry RL, Green DM (1997) Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 55(11):1294–1299PubMed Whitman DH, Berry RL, Green DM (1997) Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 55(11):1294–1299PubMed
45.
go back to reference Zdeblick TA, Cooke ME, Kunz DN, Wilson D, McCabe RP (1994) Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute. Spine 19(20):2348–2357PubMed Zdeblick TA, Cooke ME, Kunz DN, Wilson D, McCabe RP (1994) Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute. Spine 19(20):2348–2357PubMed
46.
go back to reference Zdeblick TA, Ghanayem AJ, Rapoff AJ, Swain C, Bassett T, Cooke ME, Markel M (1998) Cervical interbody fusion cages. An animal model with and without bone morphogenetic protein. Spine 23(7):758–765; discussion 766CrossRefPubMed Zdeblick TA, Ghanayem AJ, Rapoff AJ, Swain C, Bassett T, Cooke ME, Markel M (1998) Cervical interbody fusion cages. An animal model with and without bone morphogenetic protein. Spine 23(7):758–765; discussion 766CrossRefPubMed
Metadata
Title
Spinal fusion using an autologous growth factor gel and a porous resorbable ceramic
Authors
William R. Walsh
Andreas Loefler
Sean Nicklin
Doug Arm
Ralph E. Stanford
Yan Yu
Richard Harris
R. M. Gillies
Publication date
01-07-2004
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 4/2004
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-003-0597-9

Other articles of this Issue 4/2004

European Spine Journal 4/2004 Go to the issue