Skip to main content
Top
Published in: Malaria Journal 1/2009

Open Access 01-12-2009 | Research

Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control

Authors: Tellal B Ageep, Jonathan Cox, M'oawia M Hassan, Bart GJ Knols, Mark Q Benedict, Colin A Malcolm, Ahmed Babiker, Badria B El Sayed

Published in: Malaria Journal | Issue 1/2009

Login to get access

Abstract

Background

Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM) that may include the sterile insect technique (SIT). To support the planning and implementation of future AW-IPM activities, larval surveys were carried out to provide key data on spatial and seasonal dynamics of local vector populations.

Methods

Monthly cross-sectional larval surveys were carried out between March 2005 and May 2007 in two localities (Dongola and Merowe) adjacent to the river Nile. A stratified random sampling strategy based on the use of Remote Sensing (RS), Geographical Information Systems (GIS) and the Global Positioning System (GPS) was used to select survey locations. Breeding sites were mapped using GPS and data on larval density and breeding site characteristics were recorded using handheld computers. Bivariate and multivariate logistic regression models were used to identify breeding site characteristics associated with increased risk of presence of larvae. Seasonal patterns in the proportion of breeding sites positive for larvae were compared visually to contemporaneous data on climate and river height.

Results

Of a total of 3,349 aquatic habitats sampled, 321 (9.6%) contained An. arabiensis larvae. The frequency with which larvae were found varied markedly by habitat type. Although most positive sites were associated with temporary standing water around the margins of the main Nile channel, larvae were also found at brickworks and in areas of leaking pipes and canals – often far from the river. Close to the Nile channel, a distinct seasonal pattern in larval populations was evident and appeared to be linked to the rise and fall of the river level. These patterns were not evident in vector populations breeding in artificial water sources away from the river.

Conclusion

The GIS-based survey strategy developed in this study provides key data on the population dynamics of An. arabiensis in Northern State. Quantitative estimates of the contributions of various habitat types and their proximity to settlements provide a basis for planning a strategy for reducing malaria risk by elimination of the vector population.
Appendix
Available only for authorised users
Literature
1.
go back to reference FMOH: Annual health statistical report 2006. 2006, Khartoum: Federal Ministry of Health, Republic of Sudan FMOH: Annual health statistical report 2006. 2006, Khartoum: Federal Ministry of Health, Republic of Sudan
2.
go back to reference Shousha AT: The eradication of Anopheles gambiae from Upper Egypt 1942–1945. Bull World Health Organ. 1948, 1 (2): 310-352. Shousha AT: The eradication of Anopheles gambiae from Upper Egypt 1942–1945. Bull World Health Organ. 1948, 1 (2): 310-352.
3.
go back to reference Dukeen M, Omer S: Ecology of the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae) by the Nile in northern Sudan. Bull Entomol Res. 1986, 76: 451-467.CrossRef Dukeen M, Omer S: Ecology of the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae) by the Nile in northern Sudan. Bull Entomol Res. 1986, 76: 451-467.CrossRef
4.
go back to reference Lewis DJ: The anopheline mosquitoes of Sudan. Bull Entomol Res. 1956, 47: 475-494.CrossRef Lewis DJ: The anopheline mosquitoes of Sudan. Bull Entomol Res. 1956, 47: 475-494.CrossRef
5.
go back to reference Azrag RS: Microsatellite and mitochondrial genetic differentiation of Anopheles arabiensis Patton (Diptera: Culicidae) along the river Nile. 2008, Khartoum: University of Khartoum Azrag RS: Microsatellite and mitochondrial genetic differentiation of Anopheles arabiensis Patton (Diptera: Culicidae) along the river Nile. 2008, Khartoum: University of Khartoum
6.
go back to reference Benedict MQ, Robinson AS: The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends in Parasitology. 2003, 19 (8): 349-355.CrossRefPubMed Benedict MQ, Robinson AS: The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends in Parasitology. 2003, 19 (8): 349-355.CrossRefPubMed
7.
go back to reference Cox J, Vreysen MJB: Use of GIS and spatial analysis in AW-IPM progarmmes that integrate the sterile insect technique. The Sterile Insect Technique Principles and Practice in Areawide Integrated Pest Management. Edited by: Dyck VA. 2005, Berlin: Springer Verlag Cox J, Vreysen MJB: Use of GIS and spatial analysis in AW-IPM progarmmes that integrate the sterile insect technique. The Sterile Insect Technique Principles and Practice in Areawide Integrated Pest Management. Edited by: Dyck VA. 2005, Berlin: Springer Verlag
9.
go back to reference Baatz M, Benz U, Dehghani S, Heynen M, Höltje A, Hofmann P, Lingenfelder I, Mimler M, Sohlbach M, Weber M, Willhauck G: eCognition Professional: User Guide 4. 2004, München: Definiens Imaging GmbH Baatz M, Benz U, Dehghani S, Heynen M, Höltje A, Hofmann P, Lingenfelder I, Mimler M, Sohlbach M, Weber M, Willhauck G: eCognition Professional: User Guide 4. 2004, München: Definiens Imaging GmbH
10.
go back to reference Hay GJ, Marceau DJ, Dube P, Bouchard A: A multiscale framework for landscape analysis: Object-specific analysis and upscaling. Landscape Ecology. 2001, 16 (6): 471-490.CrossRef Hay GJ, Marceau DJ, Dube P, Bouchard A: A multiscale framework for landscape analysis: Object-specific analysis and upscaling. Landscape Ecology. 2001, 16 (6): 471-490.CrossRef
11.
go back to reference Cox JS: The role of Geographic Information Systems and spatial analysis in area-wide vector control programmes. Area-Wide Control of Insect Pests: From Research to Field Implementation. Edited by: Vreysen MJB, Robinson AS, Hendrichs J. 2007, Dordrecht, The Netherlands: Springer, 199-210.CrossRef Cox JS: The role of Geographic Information Systems and spatial analysis in area-wide vector control programmes. Area-Wide Control of Insect Pests: From Research to Field Implementation. Edited by: Vreysen MJB, Robinson AS, Hendrichs J. 2007, Dordrecht, The Netherlands: Springer, 199-210.CrossRef
12.
go back to reference Kulldorff M, Nagarwalla N: Spatial disease clusters: detection and inference. Statistics in Medicine. 1995, 14 (8): 799-810.CrossRefPubMed Kulldorff M, Nagarwalla N: Spatial disease clusters: detection and inference. Statistics in Medicine. 1995, 14 (8): 799-810.CrossRefPubMed
14.
go back to reference Brooker S, Clarke S, Njagi JK, Polack S, Mugo B, Estambale B, Muchiri E, Magnussen P, Cox J: Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Trop Med Int Health. 2004, 9 (7): 757-766.CrossRefPubMed Brooker S, Clarke S, Njagi JK, Polack S, Mugo B, Estambale B, Muchiri E, Magnussen P, Cox J: Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Trop Med Int Health. 2004, 9 (7): 757-766.CrossRefPubMed
15.
go back to reference Bøgh C, Clarke SE, Jawara M, Thomas CJ, Lindsay SW: Localized breeding of the Anopheles gambiae complex (Diptera: Culicidae) along the River Gambia, West Africa. Bull Entomol Res. 2003, 93 (04): 279-287.CrossRefPubMed Bøgh C, Clarke SE, Jawara M, Thomas CJ, Lindsay SW: Localized breeding of the Anopheles gambiae complex (Diptera: Culicidae) along the River Gambia, West Africa. Bull Entomol Res. 2003, 93 (04): 279-287.CrossRefPubMed
16.
go back to reference Majambere S, Fillinger U, Sayer DR, Green C, Lindsay SW: Spatial Distribution of Mosquito Larvae and the Potential for Targeted Larval Control in The Gambia. Am J Trop Med Hyg. 2008, 79 (1): 19-27.PubMed Majambere S, Fillinger U, Sayer DR, Green C, Lindsay SW: Spatial Distribution of Mosquito Larvae and the Potential for Targeted Larval Control in The Gambia. Am J Trop Med Hyg. 2008, 79 (1): 19-27.PubMed
17.
go back to reference Sogoba N, Doumbia S, Vounatsou P, Baber I, Keita M, Maiga M, Traore SF, Toure A, Dolo G, Smith T, Ribeiro MC: Monitoring of Larval Habitats and Mosquito Densities in the Sudan Savanna of Mali: Implications for Malaria Vector Control. Am J Trop Med Hyg. 2007, 77 (1): 82-88.PubMed Sogoba N, Doumbia S, Vounatsou P, Baber I, Keita M, Maiga M, Traore SF, Toure A, Dolo G, Smith T, Ribeiro MC: Monitoring of Larval Habitats and Mosquito Densities in the Sudan Savanna of Mali: Implications for Malaria Vector Control. Am J Trop Med Hyg. 2007, 77 (1): 82-88.PubMed
Metadata
Title
Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control
Authors
Tellal B Ageep
Jonathan Cox
M'oawia M Hassan
Bart GJ Knols
Mark Q Benedict
Colin A Malcolm
Ahmed Babiker
Badria B El Sayed
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2009
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-8-123

Other articles of this Issue 1/2009

Malaria Journal 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.