Skip to main content
Top
Published in: Translational Neurodegeneration 1/2019

Open Access 01-12-2019 | Spastic Paraplegia | Research

Clinical features and genetic spectrum in Chinese patients with recessive hereditary spastic paraplegia

Authors: Qiao Wei, Hai-Lin Dong, Li-Ying Pan, Cong-Xin Chen, Yang-Tian Yan, Rou-Min Wang, Hong-Fu Li, Zhi-Jun Liu, Qing-Qing Tao, Zhi-Ying Wu

Published in: Translational Neurodegeneration | Issue 1/2019

Login to get access

Abstract

Background

Although many causative genes of hereditary spastic paraplegia (HSP) have been uncovered in recent years, there are still approximately 50% of HSP patients without genetically diagnosis, especially in autosomal recessive (AR) HSP patients. Rare studies have been performed to determine the genetic spectrum and clinical profiles of recessive HSP patients in the Chinese population.

Methods

In this study, we investigated 24 Chinese index AR/sporadic patients by targeted next-generation sequencing (NGS), Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). Further functional studies were performed to identify pathogenicity of those uncertain significance variants.

Results

We identified 11 mutations in HSP related genes including 7 novel mutations, including two (p.V1979_L1980delinsX, p.F2343 fs) in SPG11, two (p.T55 M, p.S308 T) in AP5Z1, one (p.S242 N) in ALDH18A1, one (p.D597fs) in GBA2, and one (p.Q486X) in ATP13A2 in 8 index patients and their family members. Mutations in ALDH18A1, AP5Z1, CAPN1 and ATP13A2 genes were firstly reported in the Chinese population. Furthermore, the clinical phenotypes of the patients carrying mutations were described in detail. The mutation (p.S242 N) in ALDH18A1 decreased enzyme activity of P5CS and mutations (p.T55 M, p.S308 T) in AP5Z1 induced lysosomal dysfunction.

Conclusion

Our results expanded the genetic spectrum and clinical profiles of AR-HSP patients and further demonstrated the efficiency and reliability of targeted NGS diagnosing suspected HSP patients.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1(8334):1151–5.PubMedCrossRef Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1(8334):1151–5.PubMedCrossRef
4.
go back to reference Tesson C, Koht J, Stevanin G. Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet. 2015;134(6):511–38.PubMedPubMedCentralCrossRef Tesson C, Koht J, Stevanin G. Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet. 2015;134(6):511–38.PubMedPubMedCentralCrossRef
5.
go back to reference Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM. Prevalence of hereditary ataxia and spastic paraplegia in Southeast Norway: a population-based study. Brain. 2009;132(Pt 6):1577–88.PubMedCrossRef Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM. Prevalence of hereditary ataxia and spastic paraplegia in Southeast Norway: a population-based study. Brain. 2009;132(Pt 6):1577–88.PubMedCrossRef
6.
go back to reference Finsterer J, Loscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci. 2012;318(1–2):1–18.PubMedCrossRef Finsterer J, Loscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci. 2012;318(1–2):1–18.PubMedCrossRef
7.
go back to reference de Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, Bortholin T, Oliveira ASB. Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum. 2017;16(2):525–51.PubMedCrossRef de Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, Bortholin T, Oliveira ASB. Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum. 2017;16(2):525–51.PubMedCrossRef
8.
go back to reference Novarino G, Fenstermaker AG, Zaki MS, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014;343(6170):506–11.PubMedPubMedCentralCrossRef Novarino G, Fenstermaker AG, Zaki MS, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014;343(6170):506–11.PubMedPubMedCentralCrossRef
9.
10.
go back to reference Pensato V, Castellotti B, Gellera C, et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain. 2014;137(Pt 7):1907–20.PubMedCrossRef Pensato V, Castellotti B, Gellera C, et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain. 2014;137(Pt 7):1907–20.PubMedCrossRef
11.
go back to reference Lynch DS, Koutsis G, Tucci A, et al. Hereditary spastic paraplegia in Greece: characterisation of a previously unexplored population using next-generation sequencing. Eur J Hum Genet. 2016;24(6):857–63.PubMedCrossRef Lynch DS, Koutsis G, Tucci A, et al. Hereditary spastic paraplegia in Greece: characterisation of a previously unexplored population using next-generation sequencing. Eur J Hum Genet. 2016;24(6):857–63.PubMedCrossRef
12.
go back to reference Du J, Hu YC, Tang BS, Jiang H, Shen L. Identification of novel SPG11 mutations in a cohort of Chinese families with hereditary spastic paraplegia. Int J Neurosci. 2018;128(2):146–50.PubMedCrossRef Du J, Hu YC, Tang BS, Jiang H, Shen L. Identification of novel SPG11 mutations in a cohort of Chinese families with hereditary spastic paraplegia. Int J Neurosci. 2018;128(2):146–50.PubMedCrossRef
13.
go back to reference Yang YJ, Zhou ZF, Liao XX, et al. SPG46 and SPG56 are rare causes of hereditary spastic paraplegia in China. J Neurol. 2016;263(10):2136–8.PubMedCrossRef Yang YJ, Zhou ZF, Liao XX, et al. SPG46 and SPG56 are rare causes of hereditary spastic paraplegia in China. J Neurol. 2016;263(10):2136–8.PubMedCrossRef
14.
go back to reference Liao X, Luo Y, Zhan Z, et al. SPG35 contributes to the second common subtype of AR-HSP in China: frequency analysis and functional characterization of FA2H gene mutations. Clin Genet. 2015;87(1):85–9.PubMedCrossRef Liao X, Luo Y, Zhan Z, et al. SPG35 contributes to the second common subtype of AR-HSP in China: frequency analysis and functional characterization of FA2H gene mutations. Clin Genet. 2015;87(1):85–9.PubMedCrossRef
15.
go back to reference Lu C, Li LX, Dong HL, et al. Targeted next-generation sequencing improves diagnosis of hereditary spastic paraplegia in Chinese patients. J Mol Med. 2018;96(7):701–12.PubMedCrossRef Lu C, Li LX, Dong HL, et al. Targeted next-generation sequencing improves diagnosis of hereditary spastic paraplegia in Chinese patients. J Mol Med. 2018;96(7):701–12.PubMedCrossRef
16.
go back to reference Lu C, Zheng YC, Dong Y, Li HF. Identification of novel senataxin mutations in Chinese patients with autosomal recessive cerebellar ataxias by targeted next-generation sequencing. BMC Neurol. 2016;16(1):179.PubMedPubMedCentralCrossRef Lu C, Zheng YC, Dong Y, Li HF. Identification of novel senataxin mutations in Chinese patients with autosomal recessive cerebellar ataxias by targeted next-generation sequencing. BMC Neurol. 2016;16(1):179.PubMedPubMedCentralCrossRef
17.
go back to reference Liu ZJ, Li HF, Tan GH, et al. Identify mutation in amyotrophic lateral sclerosis cases using HaloPlex target enrichment system. Neurobiol Aging. 2014;35(12):2881 e11–5.CrossRef Liu ZJ, Li HF, Tan GH, et al. Identify mutation in amyotrophic lateral sclerosis cases using HaloPlex target enrichment system. Neurobiol Aging. 2014;35(12):2881 e11–5.CrossRef
18.
go back to reference Li LX, Liu GL, Liu ZJ, Lu C, Wu ZY. Identification and functional characterization of two missense mutations in NDRG1 associated with Charcot-Marie-tooth disease type 4D. Hum Mutat. 2017;38(11):1569–78.PubMedCrossRef Li LX, Liu GL, Liu ZJ, Lu C, Wu ZY. Identification and functional characterization of two missense mutations in NDRG1 associated with Charcot-Marie-tooth disease type 4D. Hum Mutat. 2017;38(11):1569–78.PubMedCrossRef
19.
go back to reference Gunther S, Elert-Dobkowska E, Soehn AS, et al. High frequency of pathogenic rearrangements in SPG11 and extensive contribution of mutational hotspots and founder alleles. Hum Mutat. 2016;37(7):703–9.PubMedCrossRef Gunther S, Elert-Dobkowska E, Soehn AS, et al. High frequency of pathogenic rearrangements in SPG11 and extensive contribution of mutational hotspots and founder alleles. Hum Mutat. 2016;37(7):703–9.PubMedCrossRef
20.
go back to reference Denora PS, Schlesinger D, Casali C, et al. Screening of ARHSP-TCC patients expands the spectrum of SPG11 mutations and includes a large scale gene deletion. Hum Mutat. 2009;30(3):E500–19.PubMedCrossRef Denora PS, Schlesinger D, Casali C, et al. Screening of ARHSP-TCC patients expands the spectrum of SPG11 mutations and includes a large scale gene deletion. Hum Mutat. 2009;30(3):E500–19.PubMedCrossRef
21.
go back to reference Ueki I, Kimura A, Nishiyori A, et al. Neonatal cholestatic liver disease in an Asian patient with a homozygous mutation in the oxysterol 7alpha-hydroxylase gene. J Pediatr Gastroenterol Nutr. 2008;46(4):465–9.PubMedCrossRef Ueki I, Kimura A, Nishiyori A, et al. Neonatal cholestatic liver disease in an Asian patient with a homozygous mutation in the oxysterol 7alpha-hydroxylase gene. J Pediatr Gastroenterol Nutr. 2008;46(4):465–9.PubMedCrossRef
22.
go back to reference Tadic V, Klein C, Hinrichs F, Munchau A, Lohmann K, Bruggemann N. CAPN1 mutations are associated with a syndrome of combined spasticity and ataxia. J Neurol. 2017;264(5):1008–10.PubMedCrossRef Tadic V, Klein C, Hinrichs F, Munchau A, Lohmann K, Bruggemann N. CAPN1 mutations are associated with a syndrome of combined spasticity and ataxia. J Neurol. 2017;264(5):1008–10.PubMedCrossRef
23.
go back to reference Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.PubMedPubMedCentralCrossRef Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.PubMedPubMedCentralCrossRef
24.
go back to reference Lan MY, Yeh TH, Chang YY, et al. Clinical and genetic analysis of Taiwanese patients with hereditary spastic paraplegia type 5. Eur J Neurol. 2015;22(1):211–4.PubMedCrossRef Lan MY, Yeh TH, Chang YY, et al. Clinical and genetic analysis of Taiwanese patients with hereditary spastic paraplegia type 5. Eur J Neurol. 2015;22(1):211–4.PubMedCrossRef
25.
go back to reference Casali C, Valente EM, Bertini E, et al. Clinical and genetic studies in hereditary spastic paraplegia with thin corpus callosum. Neurology. 2004;62(2):262–8.PubMedCrossRef Casali C, Valente EM, Bertini E, et al. Clinical and genetic studies in hereditary spastic paraplegia with thin corpus callosum. Neurology. 2004;62(2):262–8.PubMedCrossRef
26.
go back to reference Stevanin G, Santorelli FM, Azzedine H, et al. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet. 2007;39(3):366–72.PubMedCrossRef Stevanin G, Santorelli FM, Azzedine H, et al. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet. 2007;39(3):366–72.PubMedCrossRef
27.
go back to reference Stevanin G, Azzedine H, Denora P, et al. Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain. 2008;131(Pt 3):772–84.PubMedCrossRef Stevanin G, Azzedine H, Denora P, et al. Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain. 2008;131(Pt 3):772–84.PubMedCrossRef
28.
go back to reference Schneider SA, Mummery CJ, Mehrabian M, Houlden H, Bain PG. SPG11 presenting with tremor. Tremor other hyperkinet Mov. 2012;2:tre-02-104-666-1. Schneider SA, Mummery CJ, Mehrabian M, Houlden H, Bain PG. SPG11 presenting with tremor. Tremor other hyperkinet Mov. 2012;2:tre-02-104-666-1.
29.
30.
go back to reference Hu CA, Lin WW, Obie C, Valle D. Molecular enzymology of mammalian delta1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J Biol Chem. 1999;274(10):6754–62.PubMedCrossRef Hu CA, Lin WW, Obie C, Valle D. Molecular enzymology of mammalian delta1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J Biol Chem. 1999;274(10):6754–62.PubMedCrossRef
31.
go back to reference Panza E, Escamilla-Honrubia JM, Marco-Marin C, et al. ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain. 2016;139(Pt 1):e3.PubMedCrossRef Panza E, Escamilla-Honrubia JM, Marco-Marin C, et al. ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain. 2016;139(Pt 1):e3.PubMedCrossRef
32.
go back to reference Coutelier M, Goizet C, Durr A, et al. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain. 2015;138(Pt 8:2191–205.PubMedPubMedCentralCrossRef Coutelier M, Goizet C, Durr A, et al. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain. 2015;138(Pt 8:2191–205.PubMedPubMedCentralCrossRef
33.
go back to reference Steenhof M, Kibaek M, Larsen MJ, et al. Compound heterozygous mutations in two different domains of ALDH18A1 do not affect the amino acid levels in a patient with hereditary spastic paraplegia. Neurogenetics. 2018;19(3):145–9.PubMedCrossRef Steenhof M, Kibaek M, Larsen MJ, et al. Compound heterozygous mutations in two different domains of ALDH18A1 do not affect the amino acid levels in a patient with hereditary spastic paraplegia. Neurogenetics. 2018;19(3):145–9.PubMedCrossRef
34.
go back to reference Koh K, Ishiura H, Beppu M, et al. Novel mutations in the ALDH18A1 gene in complicated hereditary spastic paraplegia with cerebellar ataxia and cognitive impairment. J Hum Genet. 2018;63(9):1009–13.PubMedCrossRef Koh K, Ishiura H, Beppu M, et al. Novel mutations in the ALDH18A1 gene in complicated hereditary spastic paraplegia with cerebellar ataxia and cognitive impairment. J Hum Genet. 2018;63(9):1009–13.PubMedCrossRef
35.
go back to reference Martin E, Schule R, Smets K, et al. Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet. 2013;92(2):238–44.PubMedPubMedCentralCrossRef Martin E, Schule R, Smets K, et al. Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet. 2013;92(2):238–44.PubMedPubMedCentralCrossRef
36.
go back to reference Hammer MB, Eleuch-Fayache G, Schottlaender LV, et al. Mutations in GBA2 cause autosomal-recessive cerebellar ataxia with spasticity. Am J Hum Genet. 2013;92(2):245–51.PubMedPubMedCentralCrossRef Hammer MB, Eleuch-Fayache G, Schottlaender LV, et al. Mutations in GBA2 cause autosomal-recessive cerebellar ataxia with spasticity. Am J Hum Genet. 2013;92(2):245–51.PubMedPubMedCentralCrossRef
37.
go back to reference Haugarvoll K, Johansson S, Rodriguez CE, et al. GBA2 mutations cause a Marinesco-Sjogren-like syndrome: genetic and biochemical studies. PLoS One. 2017;12(1):e0169309.PubMedPubMedCentralCrossRef Haugarvoll K, Johansson S, Rodriguez CE, et al. GBA2 mutations cause a Marinesco-Sjogren-like syndrome: genetic and biochemical studies. PLoS One. 2017;12(1):e0169309.PubMedPubMedCentralCrossRef
38.
go back to reference Coarelli G, Romano S, Travaglini L, et al. Novel homozygous GBA2 mutation in a patient with complicated spastic paraplegia. Clin Neurol Neurosurg. 2018;168:60–3.PubMedCrossRef Coarelli G, Romano S, Travaglini L, et al. Novel homozygous GBA2 mutation in a patient with complicated spastic paraplegia. Clin Neurol Neurosurg. 2018;168:60–3.PubMedCrossRef
39.
go back to reference Morais S, Raymond L, Mairey M, et al. Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. Eur J Human Genet. 2017;25(11):1217–28.CrossRef Morais S, Raymond L, Mairey M, et al. Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. Eur J Human Genet. 2017;25(11):1217–28.CrossRef
40.
go back to reference Hirst J, Borner GH, Edgar J, et al. Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol Biol Cell. 2013;24(16):2558–69.PubMedPubMedCentralCrossRef Hirst J, Borner GH, Edgar J, et al. Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol Biol Cell. 2013;24(16):2558–69.PubMedPubMedCentralCrossRef
41.
go back to reference Hirst J, Edgar JR, Esteves T, et al. Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet. 2015;24(17):4984–96.PubMedPubMedCentralCrossRef Hirst J, Edgar JR, Esteves T, et al. Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet. 2015;24(17):4984–96.PubMedPubMedCentralCrossRef
42.
go back to reference Gan-Or Z, Bouslam N, Birouk N, et al. Mutations in CAPN1 cause autosomal-recessive hereditary spastic paraplegia. Am J Hum Genet. 2016;98(5):1038–46.PubMedPubMedCentralCrossRef Gan-Or Z, Bouslam N, Birouk N, et al. Mutations in CAPN1 cause autosomal-recessive hereditary spastic paraplegia. Am J Hum Genet. 2016;98(5):1038–46.PubMedPubMedCentralCrossRef
43.
go back to reference Travaglini L, Bellacchio E, Aiello C, Pro S, Bertini E, Nicita F. Expanding the clinical phenotype of CAPN1-associated mutations: a new case with congenital-onset pure spastic paraplegia. J Neurol Sci. 2017;378:210–2.PubMedCrossRef Travaglini L, Bellacchio E, Aiello C, Pro S, Bertini E, Nicita F. Expanding the clinical phenotype of CAPN1-associated mutations: a new case with congenital-onset pure spastic paraplegia. J Neurol Sci. 2017;378:210–2.PubMedCrossRef
44.
go back to reference Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–91.PubMedCrossRef Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–91.PubMedCrossRef
45.
go back to reference Park JS, Mehta P, Cooper AA, et al. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum Mutat. 2011;32(8):956–64.PubMedCrossRef Park JS, Mehta P, Cooper AA, et al. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum Mutat. 2011;32(8):956–64.PubMedCrossRef
46.
go back to reference Farias FH, Zeng R, Johnson GS, et al. A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers. Neurobiol Dis. 2011;42(3):468–74.PubMedCrossRef Farias FH, Zeng R, Johnson GS, et al. A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers. Neurobiol Dis. 2011;42(3):468–74.PubMedCrossRef
47.
go back to reference van de Warrenburg BP, Schouten MI, de Bot ST, et al. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Human Genet. 2016;24(10):1460–6.CrossRef van de Warrenburg BP, Schouten MI, de Bot ST, et al. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Human Genet. 2016;24(10):1460–6.CrossRef
48.
go back to reference Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–50.PubMedPubMedCentralCrossRef Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–50.PubMedPubMedCentralCrossRef
49.
go back to reference Estrada-Cuzcano A, Martin S, Chamova T, et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(2):287–305.PubMedPubMedCentralCrossRef Estrada-Cuzcano A, Martin S, Chamova T, et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(2):287–305.PubMedPubMedCentralCrossRef
Metadata
Title
Clinical features and genetic spectrum in Chinese patients with recessive hereditary spastic paraplegia
Authors
Qiao Wei
Hai-Lin Dong
Li-Ying Pan
Cong-Xin Chen
Yang-Tian Yan
Rou-Min Wang
Hong-Fu Li
Zhi-Jun Liu
Qing-Qing Tao
Zhi-Ying Wu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2019
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-019-0157-9

Other articles of this Issue 1/2019

Translational Neurodegeneration 1/2019 Go to the issue