Skip to main content
Top
Published in: Translational Neurodegeneration 1/2019

Open Access 01-12-2019 | Review

DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria

Authors: Luis Bermúdez-Guzmán, Alejandro Leal

Published in: Translational Neurodegeneration | Issue 1/2019

Login to get access

Abstract

Mutations in DNA repair enzymes can cause two neurological clinical manifestations: a developmental impairment and a degenerative disease. Polynucleotide kinase 3′-phosphatase (PNKP) is an enzyme that is actively involved in DNA repair in both single and double strand break repair systems. Mutations in this protein or others in the same pathway are responsible for a complex group of diseases with a broad clinical spectrum. Besides, mitochondrial dysfunction also has been consolidated as a hallmark of brain degeneration. Here we provide evidence that supports a shared role between mitochondrial dysfunction and DNA repair defects in the pathogenesis of the nervous system. As models, we analyze PNKP-related disorders, focusing on Charcot-Marie-Tooth disease and ataxia. A better understanding of the molecular dynamics of this relationship could provide improved diagnosis and treatment for neurological diseases.
Literature
2.
go back to reference Leal A, Bogantes-Ledezma S, Ekici AB, Uebe S, Thiel CT, Sticht H, et al. The polynucleotide kinase 3′-phosphatase gene (PNKP) is involved in Charcot-Marie-tooth disease (CMT2B2) previously related to MED25. Neurogenetics. 2018;19:215–25.PubMedPubMedCentralCrossRef Leal A, Bogantes-Ledezma S, Ekici AB, Uebe S, Thiel CT, Sticht H, et al. The polynucleotide kinase 3′-phosphatase gene (PNKP) is involved in Charcot-Marie-tooth disease (CMT2B2) previously related to MED25. Neurogenetics. 2018;19:215–25.PubMedPubMedCentralCrossRef
3.
go back to reference Bras J, Alonso I, Barbot C, Costa MM, Darwent L, Orme T, et al. Mutations in PNKP cause recessive Ataxia with oculomotor apraxia type 4. Am J Hum Genet. 2015;96:474–9.PubMedPubMedCentralCrossRef Bras J, Alonso I, Barbot C, Costa MM, Darwent L, Orme T, et al. Mutations in PNKP cause recessive Ataxia with oculomotor apraxia type 4. Am J Hum Genet. 2015;96:474–9.PubMedPubMedCentralCrossRef
4.
go back to reference Breslin C, Caldecott KW. DNA 3′-phosphatase activity is critical for rapid global rates of single-Strand break repair following oxidative stress. Mol Cell Biol. 2009;29:4653–62.PubMedPubMedCentralCrossRef Breslin C, Caldecott KW. DNA 3′-phosphatase activity is critical for rapid global rates of single-Strand break repair following oxidative stress. Mol Cell Biol. 2009;29:4653–62.PubMedPubMedCentralCrossRef
5.
go back to reference Reynolds JJ, Walker AK, Gilmore EC, Walsh CA, Caldecott KW. Impact of PNKP mutations associated with microcephaly, seizures and developmental delay on enzyme activity and DNA strand break repair. Nucleic Acids Res. 2012;40:6608–19.PubMedPubMedCentralCrossRef Reynolds JJ, Walker AK, Gilmore EC, Walsh CA, Caldecott KW. Impact of PNKP mutations associated with microcephaly, seizures and developmental delay on enzyme activity and DNA strand break repair. Nucleic Acids Res. 2012;40:6608–19.PubMedPubMedCentralCrossRef
6.
go back to reference Weinfeld M, Mani RS, Abdou I, Aceytuno RD, Glover JNM. Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci. 2011;36:262–71.PubMedPubMedCentralCrossRef Weinfeld M, Mani RS, Abdou I, Aceytuno RD, Glover JNM. Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci. 2011;36:262–71.PubMedPubMedCentralCrossRef
7.
go back to reference Della-Maria J, Hegde ML, McNeill DR, Matsumoto Y, Tsai M-S, Ellenberger T, et al. The interaction between polynucleotide kinase phosphatase and the DNA repair protein XRCC1 is critical for repair of DNA alkylation damage and stable association at DNA damage sites. J Biol Chem. 2012;287:39233–44.PubMedPubMedCentralCrossRef Della-Maria J, Hegde ML, McNeill DR, Matsumoto Y, Tsai M-S, Ellenberger T, et al. The interaction between polynucleotide kinase phosphatase and the DNA repair protein XRCC1 is critical for repair of DNA alkylation damage and stable association at DNA damage sites. J Biol Chem. 2012;287:39233–44.PubMedPubMedCentralCrossRef
8.
go back to reference Bernstein NK, Williams RS, Rakovszky ML, Cui D, Green R, Karimi-Busheri F, et al. The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol Cell. 2005;17:657–70.PubMedCrossRef Bernstein NK, Williams RS, Rakovszky ML, Cui D, Green R, Karimi-Busheri F, et al. The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol Cell. 2005;17:657–70.PubMedCrossRef
9.
go back to reference Audebert M, Salles B, Weinfeld M, Calsou P. Involvement of polynucleotide kinase in a poly(ADP-ribose) Polymerase-1-dependent DNA double-strand breaks rejoining pathway. J Mol Biol. 2006;356:257–65.PubMedCrossRef Audebert M, Salles B, Weinfeld M, Calsou P. Involvement of polynucleotide kinase in a poly(ADP-ribose) Polymerase-1-dependent DNA double-strand breaks rejoining pathway. J Mol Biol. 2006;356:257–65.PubMedCrossRef
10.
go back to reference Barzilai A. The contribution of the DNA damage response to neuronal viability. Antioxid Redox Signal. 2007;9:211–8.PubMedCrossRef Barzilai A. The contribution of the DNA damage response to neuronal viability. Antioxid Redox Signal. 2007;9:211–8.PubMedCrossRef
11.
12.
go back to reference Tann AW, Boldogh I, Meiss G, Qian W, Van Houten B, Mitra S, et al. Apoptosis induced by persistent single-strand breaks in mitochondrial genome: Critical role of exog (5′-Exo/Endonuclease) in their repair. J Biol Chem. 2011;286:31975–83.PubMedPubMedCentralCrossRef Tann AW, Boldogh I, Meiss G, Qian W, Van Houten B, Mitra S, et al. Apoptosis induced by persistent single-strand breaks in mitochondrial genome: Critical role of exog (5′-Exo/Endonuclease) in their repair. J Biol Chem. 2011;286:31975–83.PubMedPubMedCentralCrossRef
13.
go back to reference Narciso L, Parlanti E, Racaniello M, Simonelli V, Cardinale A, Merlo D, et al. The response to oxidative DNA damage in neurons: mechanisms and disease. Neural Plast. 2016;2016:1–14.CrossRef Narciso L, Parlanti E, Racaniello M, Simonelli V, Cardinale A, Merlo D, et al. The response to oxidative DNA damage in neurons: mechanisms and disease. Neural Plast. 2016;2016:1–14.CrossRef
15.
go back to reference Fortini P, Ferretti C, Dogliotti E. The response to DNA damage during differentiation: pathways and consequences. Mutat Res Mol Mech Mutagen. 2013;743–744:160–8.CrossRef Fortini P, Ferretti C, Dogliotti E. The response to DNA damage during differentiation: pathways and consequences. Mutat Res Mol Mech Mutagen. 2013;743–744:160–8.CrossRef
16.
go back to reference Fortini P, Dogliotti E. Mechanisms of dealing with DNA damage in terminally differentiated cells. Mutat Res Mol Mech Mutagen. 2010;685:38–44.CrossRef Fortini P, Dogliotti E. Mechanisms of dealing with DNA damage in terminally differentiated cells. Mutat Res Mol Mech Mutagen. 2010;685:38–44.CrossRef
17.
go back to reference Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci. 2013;16:613–21.PubMedPubMedCentralCrossRef Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci. 2013;16:613–21.PubMedPubMedCentralCrossRef
18.
go back to reference Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4:712–20.PubMedCrossRef Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4:712–20.PubMedCrossRef
19.
go back to reference Frank KM, Sharpless NE, Gao Y, Sekiguchi JM, Ferguson DO, Zhu C, et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell. 2000;6:993–1002.CrossRef Frank KM, Sharpless NE, Gao Y, Sekiguchi JM, Ferguson DO, Zhu C, et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell. 2000;6:993–1002.CrossRef
22.
24.
go back to reference Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, et al. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet. 2010;42:245–9.PubMedPubMedCentralCrossRef Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, et al. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet. 2010;42:245–9.PubMedPubMedCentralCrossRef
25.
go back to reference Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary Ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42:174–83.PubMedCrossRef Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary Ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42:174–83.PubMedCrossRef
26.
go back to reference Gao R, Liu Y, Silva-Fernandes A, Fang X, Paulucci-Holthauzen A, Chatterjee A, et al. Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. PLoS Genet. 2015;11:e1004834 Pearson CE, editor.PubMedPubMedCentralCrossRef Gao R, Liu Y, Silva-Fernandes A, Fang X, Paulucci-Holthauzen A, Chatterjee A, et al. Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. PLoS Genet. 2015;11:e1004834 Pearson CE, editor.PubMedPubMedCentralCrossRef
27.
go back to reference Shimada M, Dumitrache LC, Russell HR, McKinnon PJ. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability. EMBO J. 2015;34:2465–80.PubMedPubMedCentralCrossRef Shimada M, Dumitrache LC, Russell HR, McKinnon PJ. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability. EMBO J. 2015;34:2465–80.PubMedPubMedCentralCrossRef
28.
go back to reference Dumitrache LC, McKinnon PJ. Polynucleotide kinase-phosphatase (PNKP) mutations and neurologic disease. Mech Ageing Dev. 2017;161:121–9.PubMedCrossRef Dumitrache LC, McKinnon PJ. Polynucleotide kinase-phosphatase (PNKP) mutations and neurologic disease. Mech Ageing Dev. 2017;161:121–9.PubMedCrossRef
29.
go back to reference Aceytuno RD, Piett CG, Havali-Shahriari Z, Edwards RA, Rey M, Ye R, et al. Structural and functional characterization of the PNKP–XRCC4–LigIV DNA repair complex. Nucleic Acids Res. 2017;45:6238–51.PubMedPubMedCentralCrossRef Aceytuno RD, Piett CG, Havali-Shahriari Z, Edwards RA, Rey M, Ye R, et al. Structural and functional characterization of the PNKP–XRCC4–LigIV DNA repair complex. Nucleic Acids Res. 2017;45:6238–51.PubMedPubMedCentralCrossRef
30.
go back to reference Jiang B, Glover JNM, Weinfeld M. Neurological disorders associated with DNA strand-break processing enzymes. Mech Ageing Dev. 2017;161:130–40.PubMedCrossRef Jiang B, Glover JNM, Weinfeld M. Neurological disorders associated with DNA strand-break processing enzymes. Mech Ageing Dev. 2017;161:130–40.PubMedCrossRef
31.
go back to reference Chalasani SL, Kawale AS, Akopiants K, Yu Y, Fanta M, Weinfeld M, et al. Persistent 3′-phosphate termini and increased cytotoxicity of radiomimetic DNA double-strand breaks in cells lacking polynucleotide kinase/phosphatase despite presence of an alternative 3′-phosphatase. DNA Repair. 2018;68:12–24.PubMedCrossRefPubMedCentral Chalasani SL, Kawale AS, Akopiants K, Yu Y, Fanta M, Weinfeld M, et al. Persistent 3′-phosphate termini and increased cytotoxicity of radiomimetic DNA double-strand breaks in cells lacking polynucleotide kinase/phosphatase despite presence of an alternative 3′-phosphatase. DNA Repair. 2018;68:12–24.PubMedCrossRefPubMedCentral
32.
go back to reference Poulton C, Oegema R, Heijsman D, Hoogeboom J, Schot R, Stroink H, et al. Progressive cerebellar atrophy and polyneuropathy: expanding the spectrum of PNKP mutations. Neurogenetics. 2013;14:43–51.PubMedCrossRef Poulton C, Oegema R, Heijsman D, Hoogeboom J, Schot R, Stroink H, et al. Progressive cerebellar atrophy and polyneuropathy: expanding the spectrum of PNKP mutations. Neurogenetics. 2013;14:43–51.PubMedCrossRef
33.
go back to reference Scholz C, Golas MM, Weber RG, Hartmann C, Lehmann U, Sahm F, et al. Rare compound heterozygous variants in PNKP identified by whole exome sequencing in a German patient with ataxia-oculomotor apraxia 4 and pilocytic astrocytoma. Clin Genet. 2018;94:185–6.PubMedCrossRef Scholz C, Golas MM, Weber RG, Hartmann C, Lehmann U, Sahm F, et al. Rare compound heterozygous variants in PNKP identified by whole exome sequencing in a German patient with ataxia-oculomotor apraxia 4 and pilocytic astrocytoma. Clin Genet. 2018;94:185–6.PubMedCrossRef
34.
go back to reference Carvill GL, Heavin SB, Yendle SC, McMahon JM, O’Roak BJ, Cook J, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45:825–30.PubMedPubMedCentralCrossRef Carvill GL, Heavin SB, Yendle SC, McMahon JM, O’Roak BJ, Cook J, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45:825–30.PubMedPubMedCentralCrossRef
35.
go back to reference Mastrangelo M, Leuzzi V. Genes of early-onset epileptic encephalopathies: from genotype to phenotype. Pediatr Neurol. 2012;46:24–31.PubMedCrossRef Mastrangelo M, Leuzzi V. Genes of early-onset epileptic encephalopathies: from genotype to phenotype. Pediatr Neurol. 2012;46:24–31.PubMedCrossRef
36.
go back to reference Zsurka G, Kunz WS. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol. 2015;14:956–66.PubMedCrossRef Zsurka G, Kunz WS. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol. 2015;14:956–66.PubMedCrossRef
37.
go back to reference Bindoff LA, Engelsen BA. Mitochondrial diseases and epilepsy: mitochondrial diseases and epilepsy. Epilepsia. 2012;53:92–7.PubMedCrossRef Bindoff LA, Engelsen BA. Mitochondrial diseases and epilepsy: mitochondrial diseases and epilepsy. Epilepsia. 2012;53:92–7.PubMedCrossRef
38.
go back to reference Sanganahalli BG, Herman P, Hyder F, Kannurpatti SS. Mitochondrial calcium uptake capacity modulates neocortical excitability. J Cereb Blood Flow Metab. 2013;33:1115–26.PubMedPubMedCentralCrossRef Sanganahalli BG, Herman P, Hyder F, Kannurpatti SS. Mitochondrial calcium uptake capacity modulates neocortical excitability. J Cereb Blood Flow Metab. 2013;33:1115–26.PubMedPubMedCentralCrossRef
39.
go back to reference Pareyson D, Saveri P, Sagnelli A, Piscosquito G. Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett. 2015;596:66–77.PubMedCrossRef Pareyson D, Saveri P, Sagnelli A, Piscosquito G. Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett. 2015;596:66–77.PubMedCrossRef
40.
go back to reference Sajic M, Mastrolia V, Lee CY, Trigo D, Sadeghian M, Mosley AJ, et al. Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo. PLoS Biol. 2013;11:e1001754 Barres BA, editor.PubMedPubMedCentralCrossRef Sajic M, Mastrolia V, Lee CY, Trigo D, Sadeghian M, Mosley AJ, et al. Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo. PLoS Biol. 2013;11:e1001754 Barres BA, editor.PubMedPubMedCentralCrossRef
41.
43.
go back to reference Ligon LA, Steward O. Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol. 2000;3:340–50.CrossRef Ligon LA, Steward O. Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol. 2000;3:340–50.CrossRef
45.
go back to reference Parsons JL, Khoronenkova SV, Dianova II, Ternette N, Kessler BM, Datta PK, et al. Phosphorylation of PNKP by ATM prevents its proteasomal degradation and enhances resistance to oxidative stress. Nucleic Acids Res. 2012;40:11404–15.PubMedPubMedCentralCrossRef Parsons JL, Khoronenkova SV, Dianova II, Ternette N, Kessler BM, Datta PK, et al. Phosphorylation of PNKP by ATM prevents its proteasomal degradation and enhances resistance to oxidative stress. Nucleic Acids Res. 2012;40:11404–15.PubMedPubMedCentralCrossRef
46.
go back to reference Nam DE, Yoo DH, Choi SS, Choi B-O, Chung KW. Wide phenotypic spectrum in axonal Charcot–Marie–tooth neuropathy type 2 patients with KIF5A mutations. Genes Genomics. 2018;40:77–84.PubMedCrossRef Nam DE, Yoo DH, Choi SS, Choi B-O, Chung KW. Wide phenotypic spectrum in axonal Charcot–Marie–tooth neuropathy type 2 patients with KIF5A mutations. Genes Genomics. 2018;40:77–84.PubMedCrossRef
47.
go back to reference Goizet C, Boukhris A, Mundwiller E, Tallaksen C, Forlani S, Toutain A, et al. Complicated forms of autosomal dominant hereditary spastic paraplegia are frequent in SPG10. Hum Mutat. 2009;30:E376–85.PubMedCrossRef Goizet C, Boukhris A, Mundwiller E, Tallaksen C, Forlani S, Toutain A, et al. Complicated forms of autosomal dominant hereditary spastic paraplegia are frequent in SPG10. Hum Mutat. 2009;30:E376–85.PubMedCrossRef
48.
go back to reference Crimella C, Baschirotto C, Arnoldi A, Tonelli A, Tenderini E, Airoldi G, et al. Mutations in the motor and stalk domains of KIF5A in spastic paraplegia type 10 and in axonal Charcot-Marie-tooth type 2. Clin Genet. 2012;82:157–64.PubMedCrossRef Crimella C, Baschirotto C, Arnoldi A, Tonelli A, Tenderini E, Airoldi G, et al. Mutations in the motor and stalk domains of KIF5A in spastic paraplegia type 10 and in axonal Charcot-Marie-tooth type 2. Clin Genet. 2012;82:157–64.PubMedCrossRef
49.
go back to reference Campbell PD, Shen K, Sapio MR, Glenn TD, Talbot WS, Marlow FL. Unique function of kinesin Kif5A in localization of mitochondria in axons. J Neurosci. 2014;34:14717–32.PubMedPubMedCentralCrossRef Campbell PD, Shen K, Sapio MR, Glenn TD, Talbot WS, Marlow FL. Unique function of kinesin Kif5A in localization of mitochondria in axons. J Neurosci. 2014;34:14717–32.PubMedPubMedCentralCrossRef
50.
go back to reference Pareyson D, Marchesi C. Diagnosis, natural history, and management of Charcot–Marie–tooth disease. Lancet Neurol. 2009;8:654–67.PubMedCrossRef Pareyson D, Marchesi C. Diagnosis, natural history, and management of Charcot–Marie–tooth disease. Lancet Neurol. 2009;8:654–67.PubMedCrossRef
51.
go back to reference Cassereau J, Chevrollier A, Gueguen N, Desquiret V, Verny C, Nicolas G, et al. Mitochondrial dysfunction and pathophysiology of Charcot–Marie–tooth disease involving GDAP1 mutations. Exp Neurol. 2011;227:31–41.PubMedCrossRef Cassereau J, Chevrollier A, Gueguen N, Desquiret V, Verny C, Nicolas G, et al. Mitochondrial dysfunction and pathophysiology of Charcot–Marie–tooth disease involving GDAP1 mutations. Exp Neurol. 2011;227:31–41.PubMedCrossRef
52.
go back to reference Timmerman V, Clowes VE, Reid E. Overlapping molecular pathological themes link Charcot–Marie–tooth neuropathies and hereditary spastic paraplegias. Exp Neurol. 2013;246:14–25.PubMedCrossRef Timmerman V, Clowes VE, Reid E. Overlapping molecular pathological themes link Charcot–Marie–tooth neuropathies and hereditary spastic paraplegias. Exp Neurol. 2013;246:14–25.PubMedCrossRef
53.
go back to reference Noack R, Frede S, Albrecht P, Henke N, Pfeiffer A, Knoll K, et al. Charcot–Marie–tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential. Hum Mol Genet. 2012;21:150–62.PubMedCrossRef Noack R, Frede S, Albrecht P, Henke N, Pfeiffer A, Knoll K, et al. Charcot–Marie–tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential. Hum Mol Genet. 2012;21:150–62.PubMedCrossRef
54.
go back to reference Niemann A, Huber N, Wagner KM, Somandin C, Horn M, Lebrun-Julien F, et al. The Gdap1 knockout mouse mechanistically links redox control to Charcot–Marie–tooth disease. Brain. 2014;137:668–82.PubMedPubMedCentralCrossRef Niemann A, Huber N, Wagner KM, Somandin C, Horn M, Lebrun-Julien F, et al. The Gdap1 knockout mouse mechanistically links redox control to Charcot–Marie–tooth disease. Brain. 2014;137:668–82.PubMedPubMedCentralCrossRef
55.
go back to reference Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci. 2010;30:4232–40.PubMedPubMedCentralCrossRef Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci. 2010;30:4232–40.PubMedPubMedCentralCrossRef
56.
go back to reference Misko AL, Sasaki Y, Tuck E, Milbrandt J, Baloh RH. Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J Neurosci. 2012;32:4145–55.PubMedPubMedCentralCrossRef Misko AL, Sasaki Y, Tuck E, Milbrandt J, Baloh RH. Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J Neurosci. 2012;32:4145–55.PubMedPubMedCentralCrossRef
57.
go back to reference Longley MJ, Graziewicz MA, Bienstock RJ, Copeland WC. Consequences of mutations in human DNA polymerase γ. Gene. 2005;354:125–31.PubMedCrossRef Longley MJ, Graziewicz MA, Bienstock RJ, Copeland WC. Consequences of mutations in human DNA polymerase γ. Gene. 2005;354:125–31.PubMedCrossRef
61.
go back to reference Palau F, Estela A, Pla-Martín D, Sánchez-Piris M. The role of mitochondrial network dynamics in the pathogenesis of Charcot-Marie-tooth disease. Inherit Neuromuscul dis Transl Pathomechanisms Ther. 6th ed. Dordrecht: Springer Science+Business Media B.V; 2009. p. 129–37. Palau F, Estela A, Pla-Martín D, Sánchez-Piris M. The role of mitochondrial network dynamics in the pathogenesis of Charcot-Marie-tooth disease. Inherit Neuromuscul dis Transl Pathomechanisms Ther. 6th ed. Dordrecht: Springer Science+Business Media B.V; 2009. p. 129–37.
63.
go back to reference Mao P, Reddy PH. Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta (BBA) - Mol Basis Dis. 2010;1802:66–79.CrossRef Mao P, Reddy PH. Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta (BBA) - Mol Basis Dis. 2010;1802:66–79.CrossRef
64.
go back to reference Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol. 2014;206:655–70.PubMedPubMedCentralCrossRef Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol. 2014;206:655–70.PubMedPubMedCentralCrossRef
65.
66.
67.
go back to reference El-Khamisy SF. To live or to die: a matter of processing damaged DNA termini in neurons: DNA end processing and neurodegeneration. EMBO Mol Med. 2011;3:78–88.PubMedPubMedCentralCrossRef El-Khamisy SF. To live or to die: a matter of processing damaged DNA termini in neurons: DNA end processing and neurodegeneration. EMBO Mol Med. 2011;3:78–88.PubMedPubMedCentralCrossRef
69.
go back to reference Tahbaz N, Subedi S, Weinfeld M. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair. Nucleic Acids Res. 2012;40:3484–95.PubMedCrossRef Tahbaz N, Subedi S, Weinfeld M. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair. Nucleic Acids Res. 2012;40:3484–95.PubMedCrossRef
70.
go back to reference Kazak L, Reyes A, Holt IJ. Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol. 2012;13:659–71.PubMedCrossRef Kazak L, Reyes A, Holt IJ. Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol. 2012;13:659–71.PubMedCrossRef
71.
go back to reference Mandal SM, Hegde ML, Chatterjee A, Hegde PM, Szczesny B, Banerjee D, et al. Role of human DNA glycosylase Nei-like 2 (NEIL2) and single Strand break repair protein polynucleotide kinase 3′-phosphatase in maintenance of mitochondrial genome. J Biol Chem. 2012;287:2819–29.PubMedCrossRef Mandal SM, Hegde ML, Chatterjee A, Hegde PM, Szczesny B, Banerjee D, et al. Role of human DNA glycosylase Nei-like 2 (NEIL2) and single Strand break repair protein polynucleotide kinase 3′-phosphatase in maintenance of mitochondrial genome. J Biol Chem. 2012;287:2819–29.PubMedCrossRef
72.
go back to reference Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res. 2009;37:2539–48.PubMedPubMedCentralCrossRef Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res. 2009;37:2539–48.PubMedPubMedCentralCrossRef
73.
go back to reference Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harb Perspect Biol. 2013;5:a012641.PubMedPubMedCentralCrossRef Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harb Perspect Biol. 2013;5:a012641.PubMedPubMedCentralCrossRef
75.
go back to reference Wirtz S, Schuelke M. Region-specific expression of mitochondrial complex I genes during murine brain development. PLoS One. 2011;6:e18897 Feany MB, editor.PubMedPubMedCentralCrossRef Wirtz S, Schuelke M. Region-specific expression of mitochondrial complex I genes during murine brain development. PLoS One. 2011;6:e18897 Feany MB, editor.PubMedPubMedCentralCrossRef
76.
go back to reference Chakrabarti L, Zahra R, Jackson SM, Kazemi-Esfarjani P, Sopher BL, Mason AG, et al. Mitochondrial dysfunction in NnaD mutant flies and Purkinje cell degeneration mice reveals a role for Nna proteins in neuronal bioenergetics. Neuron. 2010;66:835–47.PubMedPubMedCentralCrossRef Chakrabarti L, Zahra R, Jackson SM, Kazemi-Esfarjani P, Sopher BL, Mason AG, et al. Mitochondrial dysfunction in NnaD mutant flies and Purkinje cell degeneration mice reveals a role for Nna proteins in neuronal bioenergetics. Neuron. 2010;66:835–47.PubMedPubMedCentralCrossRef
77.
go back to reference Girard M, Lariviere R, Parfitt DA, Deane EC, Gaudet R, Nossova N, et al. Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Proc Natl Acad Sci. 2012;109:1661–6.PubMedCrossRefPubMedCentral Girard M, Lariviere R, Parfitt DA, Deane EC, Gaudet R, Nossova N, et al. Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Proc Natl Acad Sci. 2012;109:1661–6.PubMedCrossRefPubMedCentral
78.
go back to reference Gao Y, Katyal S, Lee Y, Zhao J, Rehg JE, Russell HR, et al. DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair. Nature. 2011;471:240–4.PubMedPubMedCentralCrossRef Gao Y, Katyal S, Lee Y, Zhao J, Rehg JE, Russell HR, et al. DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair. Nature. 2011;471:240–4.PubMedPubMedCentralCrossRef
79.
go back to reference Murai J, Huang SN, Das BB, Dexheimer TS, Takeda S, Pommier Y. Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damage induced by topoisomerases I and II and base alkylation in vertebrate cells. J Biol Chem. 2012;287:12848–57.PubMedPubMedCentralCrossRef Murai J, Huang SN, Das BB, Dexheimer TS, Takeda S, Pommier Y. Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damage induced by topoisomerases I and II and base alkylation in vertebrate cells. J Biol Chem. 2012;287:12848–57.PubMedPubMedCentralCrossRef
82.
83.
go back to reference Katyal S, El-Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, et al. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J. 2007;26:4720–31.PubMedPubMedCentralCrossRef Katyal S, El-Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, et al. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J. 2007;26:4720–31.PubMedPubMedCentralCrossRef
84.
go back to reference Chiang S-C, Meagher M, Kassouf N, Hafezparast M, McKinnon PJ, Haywood R, et al. Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical–induced DNA damage. Sci Adv. 2017;3:e1602506.PubMedPubMedCentralCrossRef Chiang S-C, Meagher M, Kassouf N, Hafezparast M, McKinnon PJ, Haywood R, et al. Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical–induced DNA damage. Sci Adv. 2017;3:e1602506.PubMedPubMedCentralCrossRef
85.
go back to reference Ferro A, Carbone E, Zhang J, Marzouk E, Villegas M, Siegel A, et al. Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLoS One. 2017;12:e0188425 Chakrabarti L, editor.PubMedPubMedCentralCrossRef Ferro A, Carbone E, Zhang J, Marzouk E, Villegas M, Siegel A, et al. Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLoS One. 2017;12:e0188425 Chakrabarti L, editor.PubMedPubMedCentralCrossRef
86.
go back to reference Ripolone M, Lucchini V, Ronchi D, Fagiolari G, Bordoni A, Fortunato F, et al. Purkinje cell COX deficiency and mtDNA depletion in an animal model of spinocerebellar ataxia type 1. J Neurosci Res. 2018;96:1576–85.PubMedCrossRef Ripolone M, Lucchini V, Ronchi D, Fagiolari G, Bordoni A, Fortunato F, et al. Purkinje cell COX deficiency and mtDNA depletion in an animal model of spinocerebellar ataxia type 1. J Neurosci Res. 2018;96:1576–85.PubMedCrossRef
87.
go back to reference Laço MN, Oliveira CR, Paulson HL, Rego AC. Compromised mitochondrial complex II in models of Machado–Joseph disease. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2012;1822:139–49.CrossRef Laço MN, Oliveira CR, Paulson HL, Rego AC. Compromised mitochondrial complex II in models of Machado–Joseph disease. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2012;1822:139–49.CrossRef
88.
go back to reference Chou A-H, Yeh T-H, Kuo Y-L, Kao Y-C, Jou M-J, Hsu C-Y, et al. Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol Dis. 2006;21:333–45.PubMedCrossRef Chou A-H, Yeh T-H, Kuo Y-L, Kao Y-C, Jou M-J, Hsu C-Y, et al. Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol Dis. 2006;21:333–45.PubMedCrossRef
89.
go back to reference Goti D. A mutant Ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci. 2004;24:10266–79.PubMedCrossRefPubMedCentral Goti D. A mutant Ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci. 2004;24:10266–79.PubMedCrossRefPubMedCentral
91.
go back to reference Tzoulis C, Tran GT, Coxhead J, Bertelsen B, Lilleng PK, Balafkan N, et al. Molecular pathogenesis of polymerase gamma-related neurodegeneration: POLG-related neurodegeneration. Ann Neurol. 2014;76:66–81.PubMedPubMedCentralCrossRef Tzoulis C, Tran GT, Coxhead J, Bertelsen B, Lilleng PK, Balafkan N, et al. Molecular pathogenesis of polymerase gamma-related neurodegeneration: POLG-related neurodegeneration. Ann Neurol. 2014;76:66–81.PubMedPubMedCentralCrossRef
92.
go back to reference Abeti R, Parkinson MH, Hargreaves IP, Angelova PR, Sandi C, Pook MA, et al. Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia. Cell Death Dis. 2016;7:e2237.PubMedPubMedCentralCrossRef Abeti R, Parkinson MH, Hargreaves IP, Angelova PR, Sandi C, Pook MA, et al. Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia. Cell Death Dis. 2016;7:e2237.PubMedPubMedCentralCrossRef
93.
go back to reference Chiang S, Kovacevic Z, Sahni S, Lane DJR, Merlot AM, Kalinowski DS, et al. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich’s ataxia. Clin Sci. 2016;130:853–70.CrossRef Chiang S, Kovacevic Z, Sahni S, Lane DJR, Merlot AM, Kalinowski DS, et al. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich’s ataxia. Clin Sci. 2016;130:853–70.CrossRef
94.
go back to reference Choi M, Kipps T, Kurzrock R. ATM mutations in Cancer: therapeutic implications. Mol Cancer Ther. 2016;15:1781–91.PubMedCrossRef Choi M, Kipps T, Kurzrock R. ATM mutations in Cancer: therapeutic implications. Mol Cancer Ther. 2016;15:1781–91.PubMedCrossRef
95.
go back to reference Chow H-M, Cheng A, Song X, Swerdel MR, Hart RP, Herrup K. ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. J Cell Biol. 2019;218:909–28.PubMedCrossRefPubMedCentral Chow H-M, Cheng A, Song X, Swerdel MR, Hart RP, Herrup K. ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. J Cell Biol. 2019;218:909–28.PubMedCrossRefPubMedCentral
96.
go back to reference Zhang Y, Lee J-H, Paull TT, Gehrke S, D’Alessandro A, Dou Q, et al. Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Sci Signal. 2018;11:eaaq0702.PubMedPubMedCentralCrossRef Zhang Y, Lee J-H, Paull TT, Gehrke S, D’Alessandro A, Dou Q, et al. Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Sci Signal. 2018;11:eaaq0702.PubMedPubMedCentralCrossRef
97.
go back to reference Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood. 2012;119:1490–500.PubMedPubMedCentralCrossRef Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood. 2012;119:1490–500.PubMedPubMedCentralCrossRef
98.
go back to reference Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, et al. Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD+/SIRT1 reduction. Cell. 2014;157:882–96.PubMedPubMedCentralCrossRef Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, et al. Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD+/SIRT1 reduction. Cell. 2014;157:882–96.PubMedPubMedCentralCrossRef
99.
go back to reference Manandhar M, Lowery MG, Boulware KS, Lin KH, Lu Y, Wood RD. Transcriptional consequences of XPA disruption in human cell lines. DNA Repair. 2017;57:76–90.PubMedPubMedCentralCrossRef Manandhar M, Lowery MG, Boulware KS, Lin KH, Lu Y, Wood RD. Transcriptional consequences of XPA disruption in human cell lines. DNA Repair. 2017;57:76–90.PubMedPubMedCentralCrossRef
100.
go back to reference Scheibye-Knudsen M, Fang EF, Croteau DL, Bohr VA. Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. Autophagy. 2014;10:1468–9.PubMedPubMedCentralCrossRef Scheibye-Knudsen M, Fang EF, Croteau DL, Bohr VA. Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. Autophagy. 2014;10:1468–9.PubMedPubMedCentralCrossRef
101.
go back to reference Hoch NC, Hanzlikova H, Rulten SL, Tétreault M, Komulainen E, Ju L, et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature. 2017;541:87–91.PubMedCrossRef Hoch NC, Hanzlikova H, Rulten SL, Tétreault M, Komulainen E, Ju L, et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature. 2017;541:87–91.PubMedCrossRef
102.
go back to reference Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016;17:308–21.PubMedPubMedCentralCrossRef Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016;17:308–21.PubMedPubMedCentralCrossRef
103.
go back to reference Shull ERP, Lee Y, Nakane H, Stracker TH, Zhao J, Russell HR, et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev. 2009;23:171–80.PubMedPubMedCentralCrossRef Shull ERP, Lee Y, Nakane H, Stracker TH, Zhao J, Russell HR, et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev. 2009;23:171–80.PubMedPubMedCentralCrossRef
104.
go back to reference Lee Y, Katyal S, Li Y, El-Khamisy SF, Russell HR, Caldecott KW, et al. The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Nat Neurosci. 2009;12:973–80.PubMedPubMedCentralCrossRef Lee Y, Katyal S, Li Y, El-Khamisy SF, Russell HR, Caldecott KW, et al. The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Nat Neurosci. 2009;12:973–80.PubMedPubMedCentralCrossRef
Metadata
Title
DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria
Authors
Luis Bermúdez-Guzmán
Alejandro Leal
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2019
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-019-0156-x

Other articles of this Issue 1/2019

Translational Neurodegeneration 1/2019 Go to the issue