Skip to main content
Top
Published in: Journal of Neurology 3/2019

01-03-2019 | Spastic Paraplegia | Original Communication

Peripheral neuropathy in hereditary spastic paraplegia caused by REEP1 variants

Authors: Anders Toft, Steffen Birk, Martin Ballegaard, Morten Dunø, Lena E. Hjermind, Jørgen E. Nielsen, Kirsten Svenstrup

Published in: Journal of Neurology | Issue 3/2019

Login to get access

Abstract

SPG31 is a hereditary spastic paraplegia (HSP) caused by pathogenic variants in the REEP1 gene. The phenotype (SPG31) has occasionally been described with peripheral nervous system involvement, in additional to the gradually progressing lower limb spasticity that characterizes HSP. The objective of this study was to characterize patients with pathogenic REEP1 variants and neurophysiologically assess the extent of peripheral nerve involvement in this patient group. Thirty-eight index cases were molecular-genetically tested, yielding two previously reported pathogenic REEP1 variants and a novel missense variant, in a total of four index patients. Three of four probands and five additional family members underwent nerve conduction studies, electromyography, quantitative sensory testing, and examination of the autonomic nervous system. None of the examined patients had completely unremarkable results of peripheral nerve studies. Most showed electrophysiological signs of carpal tunnel syndrome, and one patient demonstrated a multifocal compression neuropathy. Autonomic testing revealed no severe dysfunction, and findings were limited to adrenergic function. HSP caused by pathogenic REEP1 variants may be accompanied by a generally mild and subclinical polyneuropathy with a predisposition to compression neuropathy, and should be considered in such cases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 21(8334):1151–1155 1(CrossRef Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 21(8334):1151–1155 1(CrossRef
2.
go back to reference Zhao X, Alvarado D, Rainier S, Hedera P, Weber CH, Tukel T, Apak M, Heiman-Patterson T, Ming L, Bui M, Fink JK (2001) kal Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet 29(3):326–331CrossRef Zhao X, Alvarado D, Rainier S, Hedera P, Weber CH, Tukel T, Apak M, Heiman-Patterson T, Ming L, Bui M, Fink JK (2001) kal Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet 29(3):326–331CrossRef
3.
go back to reference Züchner S, Wang G, Tran-Viet KN, Nance MA, Gaskell PC, Vance JM, Ashley-Koch AE, Pericak-Vance MA (2006) Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am J Hum Genet 79(2):365–369CrossRefPubMedCentralPubMed Züchner S, Wang G, Tran-Viet KN, Nance MA, Gaskell PC, Vance JM, Ashley-Koch AE, Pericak-Vance MA (2006) Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am J Hum Genet 79(2):365–369CrossRefPubMedCentralPubMed
4.
go back to reference Beetz C, Schüle R, Deconinck T et al (2008) REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain 131:1078–1086CrossRefPubMedCentralPubMed Beetz C, Schüle R, Deconinck T et al (2008) REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain 131:1078–1086CrossRefPubMedCentralPubMed
5.
6.
go back to reference Hewamadduma C, McDermott C, Kirby J, Grierson A, Panayi M, Dalton A, Rajabally Y, Shaw P (2009) New pedigrees and novel mutation expand the phenotype of REEP1-associated hereditary spastic paraplegia (HSP). Neurogenetics 10(2):105–110CrossRefPubMed Hewamadduma C, McDermott C, Kirby J, Grierson A, Panayi M, Dalton A, Rajabally Y, Shaw P (2009) New pedigrees and novel mutation expand the phenotype of REEP1-associated hereditary spastic paraplegia (HSP). Neurogenetics 10(2):105–110CrossRefPubMed
7.
go back to reference Goizet C, Depienne C, Benard G (2011) REEP1 mutations in SPG31: frequency, mutational spectrum, and potential association with mitochondrial morpho-functional dysfunction. Hum Mutat 32(10):1118–1127CrossRefPubMed Goizet C, Depienne C, Benard G (2011) REEP1 mutations in SPG31: frequency, mutational spectrum, and potential association with mitochondrial morpho-functional dysfunction. Hum Mutat 32(10):1118–1127CrossRefPubMed
8.
go back to reference Horowitz SH, Krarup C (1992) Conduction studies of the normal sural nerve. Muscle Nerve 15(3):374–383CrossRefPubMed Horowitz SH, Krarup C (1992) Conduction studies of the normal sural nerve. Muscle Nerve 15(3):374–383CrossRefPubMed
9.
go back to reference Rosenfalck P, Rosenfalck A (1975) Electromyography—sensory and motor conduction. Findings in normal subjects. Publications from the Laboratory of Clinical Neurophysiology, Copenhagen Rosenfalck P, Rosenfalck A (1975) Electromyography—sensory and motor conduction. Findings in normal subjects. Publications from the Laboratory of Clinical Neurophysiology, Copenhagen
10.
go back to reference Goldberg JM, Lindblom U (1979) Standardised method of determining vibratory perception thresholds for diagnosis and screening in neurological investigation. J Neurol Neurosurg Psychiatry 42(9):793–803CrossRefPubMedCentralPubMed Goldberg JM, Lindblom U (1979) Standardised method of determining vibratory perception thresholds for diagnosis and screening in neurological investigation. J Neurol Neurosurg Psychiatry 42(9):793–803CrossRefPubMedCentralPubMed
11.
go back to reference Yarnitsky D, Sprecher E (1994) Thermal testing: normative data and repeatability for various test algorithms. J Neurol Sci 125(1):39–45CrossRefPubMed Yarnitsky D, Sprecher E (1994) Thermal testing: normative data and repeatability for various test algorithms. J Neurol Sci 125(1):39–45CrossRefPubMed
12.
go back to reference Low PA, Denq JC, Opfer-Gehrking TL, Dyck PJ, O’Brien PC, Slezak JM (1997) Effect of age and gender on sudomotor and cardiovagal function and blood pressure response to tilt in normal subjects. Muscle Nerve 20(12):1561–1568CrossRefPubMed Low PA, Denq JC, Opfer-Gehrking TL, Dyck PJ, O’Brien PC, Slezak JM (1997) Effect of age and gender on sudomotor and cardiovagal function and blood pressure response to tilt in normal subjects. Muscle Nerve 20(12):1561–1568CrossRefPubMed
13.
go back to reference Novak P (2011) Quantitative autonomic testing. J Vis Exp 19(53):2502 Novak P (2011) Quantitative autonomic testing. J Vis Exp 19(53):2502
14.
go back to reference Sletten D, Grandinetti A, Weigand S et al (2015) Normative values for sudomotor axon reflex testing using QSWEAT™. Neurology 84(14 Suppl.):P1.282 Sletten D, Grandinetti A, Weigand S et al (2015) Normative values for sudomotor axon reflex testing using QSWEAT™. Neurology 84(14 Suppl.):P1.282
15.
go back to reference Low PA (1993) Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc 68(8):748–752CrossRefPubMed Low PA (1993) Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc 68(8):748–752CrossRefPubMed
16.
go back to reference Lipp A, Sandroni P, Ahlskog JE et al (2009) Prospective differentiation of multiple system atrophy from Parkinson disease, with and without autonomic failure. Arch Neurol 66(6):742–750CrossRefPubMedCentralPubMed Lipp A, Sandroni P, Ahlskog JE et al (2009) Prospective differentiation of multiple system atrophy from Parkinson disease, with and without autonomic failure. Arch Neurol 66(6):742–750CrossRefPubMedCentralPubMed
17.
go back to reference Argyriou AA, Karanasios P, Makridou A, Makris N (2009) The significance of second lumbrical-interosseous latency comparison in the diagnosis of carpal tunnel syndrome. Acta Neurol Scand 120(3):198–203CrossRefPubMed Argyriou AA, Karanasios P, Makridou A, Makris N (2009) The significance of second lumbrical-interosseous latency comparison in the diagnosis of carpal tunnel syndrome. Acta Neurol Scand 120(3):198–203CrossRefPubMed
18.
go back to reference Campbell WW, Carroll DJ, Greenberg MK et al (1999) Practice parameter for electrodiagnostic studies in ulnar neuropathy at the elbow: American Academy of Electrodiagnostic Medicine, American Academy of Neurology, American Academy of Physical Medicine and Rehabilitation. Muscle Nerve 22(suppl 8):S171–205 Campbell WW, Carroll DJ, Greenberg MK et al (1999) Practice parameter for electrodiagnostic studies in ulnar neuropathy at the elbow: American Academy of Electrodiagnostic Medicine, American Academy of Neurology, American Academy of Physical Medicine and Rehabilitation. Muscle Nerve 22(suppl 8):S171–205
19.
go back to reference England JD, Gronseth GS, Franklin G (2005) Distal symmetric polyneuropathy: a definition for clinical research: report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 64(2):199–207CrossRefPubMed England JD, Gronseth GS, Franklin G (2005) Distal symmetric polyneuropathy: a definition for clinical research: report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 64(2):199–207CrossRefPubMed
20.
go back to reference Beetz C, Pieber TR, Hertel N (2012) Exome sequencing identifies a REEP1 mutation involved in distal hereditary motor neuropathy type V. Am J Hum Genet 91(1):139–145CrossRefPubMedCentralPubMed Beetz C, Pieber TR, Hertel N (2012) Exome sequencing identifies a REEP1 mutation involved in distal hereditary motor neuropathy type V. Am J Hum Genet 91(1):139–145CrossRefPubMedCentralPubMed
21.
go back to reference Bock AS, Günther S, Mohr J, Goldberg LV, Jahic A, Klisch C, Hübner CA, Biskup S, Beetz C (2018) A nonstop variant in REEP1 causes peripheral neuropathy by unmasking a 3′UTR-encoded, aggregation-inducing motif. Hum Mutat 39(2):193–196CrossRefPubMed Bock AS, Günther S, Mohr J, Goldberg LV, Jahic A, Klisch C, Hübner CA, Biskup S, Beetz C (2018) A nonstop variant in REEP1 causes peripheral neuropathy by unmasking a 3′UTR-encoded, aggregation-inducing motif. Hum Mutat 39(2):193–196CrossRefPubMed
22.
go back to reference Høyer H, Braathen GJ, Busk ØL, Holla ØL, Svendsen M, Hilmarsen HT, Strand L, Skjelbred CF, Russell MB (2014) Genetic diagnosis of Charcot–Marie–Tooth disease in a population by next-generation sequencing. Biomed Res Int 2014:210401CrossRefPubMedCentralPubMed Høyer H, Braathen GJ, Busk ØL, Holla ØL, Svendsen M, Hilmarsen HT, Strand L, Skjelbred CF, Russell MB (2014) Genetic diagnosis of Charcot–Marie–Tooth disease in a population by next-generation sequencing. Biomed Res Int 2014:210401CrossRefPubMedCentralPubMed
23.
go back to reference Schottmann G, Seelow D, Seifert F, Morales-Gonzalez S, Gill E, von Au K, von Moers A, Stenzel W, Schuelke M (2015) Recessive REEP1 mutation is associated with congenital axonal neuropathy and diaphragmatic palsy. Neurol Genet 1(4):e32CrossRefPubMedCentralPubMed Schottmann G, Seelow D, Seifert F, Morales-Gonzalez S, Gill E, von Au K, von Moers A, Stenzel W, Schuelke M (2015) Recessive REEP1 mutation is associated with congenital axonal neuropathy and diaphragmatic palsy. Neurol Genet 1(4):e32CrossRefPubMedCentralPubMed
24.
go back to reference Park HJ, Lee MJ, Lee JE, Park KD, Choi YC (2018) Pathogenic variant of REEP1 in a Korean family with autosomal-dominant hereditary spastic paraplegia. J Clin Neurol 14(2):248–250CrossRefPubMedCentralPubMed Park HJ, Lee MJ, Lee JE, Park KD, Choi YC (2018) Pathogenic variant of REEP1 in a Korean family with autosomal-dominant hereditary spastic paraplegia. J Clin Neurol 14(2):248–250CrossRefPubMedCentralPubMed
Metadata
Title
Peripheral neuropathy in hereditary spastic paraplegia caused by REEP1 variants
Authors
Anders Toft
Steffen Birk
Martin Ballegaard
Morten Dunø
Lena E. Hjermind
Jørgen E. Nielsen
Kirsten Svenstrup
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 3/2019
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-019-09196-1

Other articles of this Issue 3/2019

Journal of Neurology 3/2019 Go to the issue