Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 5-6/2017

01-12-2017 | ORIGINAL ARTICLE

Sodium Thiosulfate Preconditioning Ameliorates Ischemia/Reperfusion Injury in Rat Hearts Via Reduction of Oxidative Stress and Apoptosis

Authors: Sriram Ravindran, Sri Rahavi Boovarahan, Karthi Shanmugam, Ramalingam C. Vedarathinam, Gino A. Kurian

Published in: Cardiovascular Drugs and Therapy | Issue 5-6/2017

Login to get access

Abstract

Purpose

Sodium thiosulfate (STS) has of late been proven efficacious in models of urolithiasis and vascular calcification. However, its cardiovascular effects on ischemia reperfusion injury (IR) have not been revealed. Being an antioxidant and calcium chelator, it is assumed to play a vital role in IR as ROS production and calcium overload are major perpetrators of IR injury.

Methods

The cardioprotective effect of STS was evaluated in vitro using H9C2 cardiomyocytes and in vivo using both isolated rat heart and intact left anterior descending artery (LAD) occlusion models of ischemia reperfusion injury. Finally, in silico tools were utilized to establish its possible mode of action. Myocardial injury markers and expression of apoptotic proteins were studied along with myocardial histopathology.

Results

STS of 1 mM recovered H9C2 cells from glucose oxidase/catalase-induced apoptosis. The isolated rat heart treated with STS prior to IR injury improved its hemodynamics and reduced the infarct size to 9%. This was supported by the absence of derangement of cardiac fibers from H&E stained section of LAD-occluded rats. Plasma troponin levels decreased by 15% compared to IR and the myocardium showed diminished apoptotic proteins. An in silico docking analysis revealed higher binding affinity of STS for caspase-3 with a binding energy of − 60.523 kcal/mol for the complex.

Conclusion

The effectiveness of STS as a cardioprotective agent is attributed to the reduction of apoptosis by binding to the active site of caspase-3 in silico, which was substantiated by the reduced expression of caspase-3 and poly ADP ribose polymerase levels.
Appendix
Available only for authorised users
Literature
2.
go back to reference Tompkins AJ, Burwell LS, Digerness SB, Zaragoza C, Holman WL, Brookes PS. Mitochondrial dysfunction in cardiac ischemia-reperfusion injury: ROS from complex I, without inhibition. Biochim Biophys Acta. 2006;1762(2):223–31.CrossRefPubMed Tompkins AJ, Burwell LS, Digerness SB, Zaragoza C, Holman WL, Brookes PS. Mitochondrial dysfunction in cardiac ischemia-reperfusion injury: ROS from complex I, without inhibition. Biochim Biophys Acta. 2006;1762(2):223–31.CrossRefPubMed
3.
go back to reference Nadtochiy SM, Burwell LS, Brookes PS. Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J Mol Cell Cardiol. 2007;42(4):812–25.CrossRefPubMedPubMedCentral Nadtochiy SM, Burwell LS, Brookes PS. Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J Mol Cell Cardiol. 2007;42(4):812–25.CrossRefPubMedPubMedCentral
4.
go back to reference Ekelof S, Jensen SE, Rosenberg J, Gogenur I. Reduced oxidative stress in STEMI patients treated by primary percutaneous coronary intervention and with antioxidant therapy: a systematic review. Cardiovasc Drugs Ther. 2014;28(2):173–81.CrossRefPubMed Ekelof S, Jensen SE, Rosenberg J, Gogenur I. Reduced oxidative stress in STEMI patients treated by primary percutaneous coronary intervention and with antioxidant therapy: a systematic review. Cardiovasc Drugs Ther. 2014;28(2):173–81.CrossRefPubMed
5.
go back to reference Ravindran S, Ansari Banu S, Kurian GA. Hydrogen sulfide preconditioning shows differential protection towards interfibrillar and subsarcolemmal mitochondria from isolated rat heart subjected to revascularization injury. Cardiovasc Pathol: Off J Soc Cardiovasc Pathol. 2016;25(4):306–15.CrossRef Ravindran S, Ansari Banu S, Kurian GA. Hydrogen sulfide preconditioning shows differential protection towards interfibrillar and subsarcolemmal mitochondria from isolated rat heart subjected to revascularization injury. Cardiovasc Pathol: Off J Soc Cardiovasc Pathol. 2016;25(4):306–15.CrossRef
6.
go back to reference Hayden MR, Tyagi SC, Kolb L, Sowers JR, Khanna R. Vascular ossification-calcification in metabolic syndrome, type 2 diabetes mellitus, chronic kidney disease, and calciphylaxis-calcific uremic arteriolopathy: the emerging role of sodium thiosulfate. Cardiovasc Diabetol. 2005;4:4.CrossRefPubMedPubMedCentral Hayden MR, Tyagi SC, Kolb L, Sowers JR, Khanna R. Vascular ossification-calcification in metabolic syndrome, type 2 diabetes mellitus, chronic kidney disease, and calciphylaxis-calcific uremic arteriolopathy: the emerging role of sodium thiosulfate. Cardiovasc Diabetol. 2005;4:4.CrossRefPubMedPubMedCentral
7.
go back to reference Shakila Banu NS, Fathima N, Chandni M, Kurian GA. Effect of sodium thiosulfate on isolated cardiac interfibrillar and Subsarcolemmal mitochondria Indian. J Pharm Sci. 2016;78(5):9. Shakila Banu NS, Fathima N, Chandni M, Kurian GA. Effect of sodium thiosulfate on isolated cardiac interfibrillar and Subsarcolemmal mitochondria Indian. J Pharm Sci. 2016;78(5):9.
8.
go back to reference Kurian GA. Anti ischemia reperfusion effect of sodium thiosulfate in LLCPK1 cells. 2015. 2015:7. Kurian GA. Anti ischemia reperfusion effect of sodium thiosulfate in LLCPK1 cells. 2015. 2015:7.
9.
go back to reference Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR. Acridine Orange/Ethidium Bromide (AO/EB) Staining to Detect Apoptosis. CSH protocols. 2006;2006(3). Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR. Acridine Orange/Ethidium Bromide (AO/EB) Staining to Detect Apoptosis. CSH protocols. 2006;2006(3).
10.
go back to reference Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discovery. 2015;10(5):449–61.CrossRef Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discovery. 2015;10(5):449–61.CrossRef
11.
go back to reference Xu Z, Alloush J, Beck E, Weisleder N. A murine model of myocardial ischemia-reperfusion injury through ligation of the left anterior descending artery. J Vis Exp : JoVE. 2014;86 Xu Z, Alloush J, Beck E, Weisleder N. A murine model of myocardial ischemia-reperfusion injury through ligation of the left anterior descending artery. J Vis Exp : JoVE. 2014;86
12.
go back to reference Piot CA, Martini JF, Bui SK, Wolfe CL. Ischemic preconditioning attenuates ischemia/reperfusion-induced activation of caspases and subsequent cleavage of poly(ADP-ribose) polymerase in rat hearts in vivo. Cardiovasc Res. 1999;44(3):536–42.CrossRefPubMed Piot CA, Martini JF, Bui SK, Wolfe CL. Ischemic preconditioning attenuates ischemia/reperfusion-induced activation of caspases and subsequent cleavage of poly(ADP-ribose) polymerase in rat hearts in vivo. Cardiovasc Res. 1999;44(3):536–42.CrossRefPubMed
13.
go back to reference Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.CrossRefPubMed Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.CrossRefPubMed
14.
go back to reference Kyte J. Structure in Protein Chemistry 2006. Kyte J. Structure in Protein Chemistry 2006.
15.
go back to reference Banu SA, Ravindran S, Kurian GA. Hydrogen sulfide post-conditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury. Cell Stress Chaperones. 2016;21(4):571–82.CrossRefPubMedPubMedCentral Banu SA, Ravindran S, Kurian GA. Hydrogen sulfide post-conditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury. Cell Stress Chaperones. 2016;21(4):571–82.CrossRefPubMedPubMedCentral
16.
go back to reference Baldev N, Sriram R, Prabu PC, Kurian GA. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model. Int Braz J Urol : Off J Braz Soc Urol. 2015;41(6):1116–25.CrossRef Baldev N, Sriram R, Prabu PC, Kurian GA. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model. Int Braz J Urol : Off J Braz Soc Urol. 2015;41(6):1116–25.CrossRef
17.
go back to reference Subhash N, Sriram R, Kurian GA. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification. Neurochem Int. 2015;90:193–203.CrossRefPubMed Subhash N, Sriram R, Kurian GA. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification. Neurochem Int. 2015;90:193–203.CrossRefPubMed
18.
go back to reference Snijder PM, Frenay AR, de Boer RA, Pasch A, Hillebrands JL, Leuvenink HG, et al. Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats. Br J Pharmacol. 2015;172(6):1494–504.CrossRefPubMedPubMedCentral Snijder PM, Frenay AR, de Boer RA, Pasch A, Hillebrands JL, Leuvenink HG, et al. Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats. Br J Pharmacol. 2015;172(6):1494–504.CrossRefPubMedPubMedCentral
19.
go back to reference Sakaguchi M, Marutani E, Shin HS, Chen W, Hanaoka K, Xian M, et al. Sodium thiosulfate attenuates acute lung injury in mice. Anesthesiology. 2014;121(6):1248–57.CrossRefPubMedPubMedCentral Sakaguchi M, Marutani E, Shin HS, Chen W, Hanaoka K, Xian M, et al. Sodium thiosulfate attenuates acute lung injury in mice. Anesthesiology. 2014;121(6):1248–57.CrossRefPubMedPubMedCentral
20.
go back to reference Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal. 2012;17(1):141–85.CrossRefPubMed Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal. 2012;17(1):141–85.CrossRefPubMed
21.
go back to reference Marutani E, Yamada M, Ida T, Tokuda K, Ikeda K, Kai S, et al. Thiosulfate mediates Cytoprotective effects of hydrogen sulfide against neuronal ischemia. J Am Heart Assoc. 2015;4(11). Marutani E, Yamada M, Ida T, Tokuda K, Ikeda K, Kai S, et al. Thiosulfate mediates Cytoprotective effects of hydrogen sulfide against neuronal ischemia. J Am Heart Assoc. 2015;4(11).
22.
go back to reference Tong XX, Wu D, Wang X, Chen HL, Chen JX, Wang XX, et al. Ghrelin protects against cobalt chloride-induced hypoxic injury in cardiac H9c2 cells by inhibiting oxidative stress and inducing autophagy. Peptides. 2012;38(2):217–27.CrossRefPubMed Tong XX, Wu D, Wang X, Chen HL, Chen JX, Wang XX, et al. Ghrelin protects against cobalt chloride-induced hypoxic injury in cardiac H9c2 cells by inhibiting oxidative stress and inducing autophagy. Peptides. 2012;38(2):217–27.CrossRefPubMed
23.
go back to reference Yang B, Ye D, Wang Y. Caspase-3 as a therapeutic target for heart failure. Expert Opin Ther Targets. 2013;17(3):255–63.CrossRefPubMed Yang B, Ye D, Wang Y. Caspase-3 as a therapeutic target for heart failure. Expert Opin Ther Targets. 2013;17(3):255–63.CrossRefPubMed
24.
go back to reference Rossig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mulsch A, et al. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem. 1999;274(11):6823–6.CrossRefPubMed Rossig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mulsch A, et al. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem. 1999;274(11):6823–6.CrossRefPubMed
25.
go back to reference Tawa P, Hell K, Giroux A, Grimm E, Han Y, Nicholson DW, et al. Catalytic activity of caspase-3 is required for its degradation: stabilization of the active complex by synthetic inhibitors. Cell Death Differ. 2004;11(4):439–47.CrossRefPubMed Tawa P, Hell K, Giroux A, Grimm E, Han Y, Nicholson DW, et al. Catalytic activity of caspase-3 is required for its degradation: stabilization of the active complex by synthetic inhibitors. Cell Death Differ. 2004;11(4):439–47.CrossRefPubMed
26.
go back to reference Kurian GA, Rajagopal R, Vedantham S, Rajesh M. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxidative Med Cell Longev. 2016;2016:1656450.CrossRef Kurian GA, Rajagopal R, Vedantham S, Rajesh M. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxidative Med Cell Longev. 2016;2016:1656450.CrossRef
27.
go back to reference Kolossov VL, Beaudoin JN, Ponnuraj N, DiLiberto SJ, Hanafin WP, Kenis PJ, et al. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III. Am J Physiol Cell Physiol. 2015;309(2):C81–91.CrossRefPubMedPubMedCentral Kolossov VL, Beaudoin JN, Ponnuraj N, DiLiberto SJ, Hanafin WP, Kenis PJ, et al. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III. Am J Physiol Cell Physiol. 2015;309(2):C81–91.CrossRefPubMedPubMedCentral
28.
go back to reference Gungor N, Ozyurek M, Guclu K, Cekic SD, Apak R. Comparative evaluation of antioxidant capacities of thiol-based antioxidants measured by different in vitro methods. Talanta. 2011;83(5):1650–8.CrossRefPubMed Gungor N, Ozyurek M, Guclu K, Cekic SD, Apak R. Comparative evaluation of antioxidant capacities of thiol-based antioxidants measured by different in vitro methods. Talanta. 2011;83(5):1650–8.CrossRefPubMed
30.
go back to reference Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000;47(3):446–56.CrossRefPubMed Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000;47(3):446–56.CrossRefPubMed
31.
go back to reference Ravindran S, Jahir Hussain S, Boovarahan SR, Kurian GA. Sodium thiosulfate post-conditioning protects rat hearts against ischemia reperfusion injury via reduction of apoptosis and oxidative stress. Chem Biol Interact. 2017;274:24–34.CrossRefPubMed Ravindran S, Jahir Hussain S, Boovarahan SR, Kurian GA. Sodium thiosulfate post-conditioning protects rat hearts against ischemia reperfusion injury via reduction of apoptosis and oxidative stress. Chem Biol Interact. 2017;274:24–34.CrossRefPubMed
Metadata
Title
Sodium Thiosulfate Preconditioning Ameliorates Ischemia/Reperfusion Injury in Rat Hearts Via Reduction of Oxidative Stress and Apoptosis
Authors
Sriram Ravindran
Sri Rahavi Boovarahan
Karthi Shanmugam
Ramalingam C. Vedarathinam
Gino A. Kurian
Publication date
01-12-2017
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 5-6/2017
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-017-6751-0

Other articles of this Issue 5-6/2017

Cardiovascular Drugs and Therapy 5-6/2017 Go to the issue