Skip to main content
Top
Published in: Respiratory Research 1/2022

Open Access 01-12-2022 | Smoking and Nicotine Detoxification | Original Paper

Early transcriptional responses of bronchial epithelial cells to whole cigarette smoke mirror those of in-vivo exposed human bronchial mucosa

Authors: Anne M. van der Does, Rashad M. Mahbub, Dennis K. Ninaber, Senani N. H. Rathnayake, Wim Timens, Maarten van den Berge, Hananeh Aliee, Fabian J. Theis, Martijn C. Nawijn, Pieter S. Hiemstra, Alen Faiz

Published in: Respiratory Research | Issue 1/2022

Login to get access

Abstract

Background

Despite the well-known detrimental effects of cigarette smoke (CS), little is known about the complex gene expression dynamics in the early stages after exposure. This study aims to investigate early transcriptomic responses following CS exposure of airway epithelial cells in culture and compare these to those found in human CS exposure studies.

Methods

Primary bronchial epithelial cells (PBEC) were differentiated at the air–liquid interface (ALI) and exposed to whole CS. Bulk RNA-sequencing was performed at 1 h, 4 h, and 24 h hereafter, followed by differential gene expression analysis. Results were additionally compared to data retrieved from human CS studies.

Results

ALI-PBEC gene expression in response to CS was most significantly changed at 4 h after exposure. Early transcriptomic changes (1 h, 4 h post CS exposure) were related to oxidative stress, xenobiotic metabolism, higher expression of immediate early genes and pro-inflammatory pathways (i.e., Nrf2, AP-1, AhR). At 24 h, ferroptosis-associated genes were significantly increased, whereas PRKN, involved in removing dysfunctional mitochondria, was downregulated. Importantly, the transcriptome dynamics of the current study mirrored in-vivo human studies of acute CS exposure, chronic smokers, and inversely mirrored smoking cessation.

Conclusion

These findings show that early after CS exposure xenobiotic metabolism and pro-inflammatory pathways were activated, followed by activation of the ferroptosis-related cell death pathway. Moreover, significant overlap between these transcriptomic responses in the in-vitro model and human in-vivo studies was found, with an early response of ciliated cells. These results provide validation for the use of ALI-PBEC cultures to study the human lung epithelial response to inhaled toxicants.
Appendix
Available only for authorised users
Literature
1.
go back to reference Laniado-Laborín R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21st century. Int J Environ Res Public Health. 2009;6(1):209–24.PubMedPubMedCentralCrossRef Laniado-Laborín R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21st century. Int J Environ Res Public Health. 2009;6(1):209–24.PubMedPubMedCentralCrossRef
2.
go back to reference Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34(3):509–15.PubMedCrossRef Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34(3):509–15.PubMedCrossRef
3.
go back to reference Thomson N, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur Respir J. 2004;24(5):822–33.PubMedCrossRef Thomson N, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur Respir J. 2004;24(5):822–33.PubMedCrossRef
4.
go back to reference Hecht SS. Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 2002;3(8):461–9.PubMedCrossRef Hecht SS. Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 2002;3(8):461–9.PubMedCrossRef
6.
go back to reference Billatos E, Faiz A, Gesthalter Y, LeClerc A, Alekseyev Y, Xiao X, et al. Impact of acute exposure to cigarette smoke on airway gene expression. Physiol Genomics. 2018;50(9):705–13.PubMedPubMedCentralCrossRef Billatos E, Faiz A, Gesthalter Y, LeClerc A, Alekseyev Y, Xiao X, et al. Impact of acute exposure to cigarette smoke on airway gene expression. Physiol Genomics. 2018;50(9):705–13.PubMedPubMedCentralCrossRef
7.
go back to reference Beane J, Sebastiani P, Liu G, Brody JS, Lenburg ME, Spira A. Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression. Genome Biol. 2007;8(9):R201.PubMedPubMedCentralCrossRef Beane J, Sebastiani P, Liu G, Brody JS, Lenburg ME, Spira A. Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression. Genome Biol. 2007;8(9):R201.PubMedPubMedCentralCrossRef
8.
go back to reference Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci USA. 2004;101(27):10143.PubMedPubMedCentralCrossRef Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci USA. 2004;101(27):10143.PubMedPubMedCentralCrossRef
9.
go back to reference Spira A, Beane JE, Shah V, Steiling K, Liu G, Schembri F, et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med. 2007;13(3):361–6.PubMedCrossRef Spira A, Beane JE, Shah V, Steiling K, Liu G, Schembri F, et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med. 2007;13(3):361–6.PubMedCrossRef
10.
go back to reference Harvey B-G, Heguy A, Leopold PL, Carolan BJ, Ferris B, Crystal RG. Modification of gene expression of the small airway epithelium in response to cigarette smoking. J Mol Med. 2007;85(1):39–53.PubMedCrossRef Harvey B-G, Heguy A, Leopold PL, Carolan BJ, Ferris B, Crystal RG. Modification of gene expression of the small airway epithelium in response to cigarette smoking. J Mol Med. 2007;85(1):39–53.PubMedCrossRef
11.
go back to reference Strulovici-Barel Y, Omberg L, O’Mahony M, Gordon C, Hollmann C, Tilley AE, et al. Threshold of biologic responses of the small airway epithelium to low levels of tobacco smoke. Am J Respir Crit Care Med. 2010;182(12):1524–32.PubMedPubMedCentralCrossRef Strulovici-Barel Y, Omberg L, O’Mahony M, Gordon C, Hollmann C, Tilley AE, et al. Threshold of biologic responses of the small airway epithelium to low levels of tobacco smoke. Am J Respir Crit Care Med. 2010;182(12):1524–32.PubMedPubMedCentralCrossRef
12.
go back to reference Zhang L, Lee JJ, Tang H, Fan Y-H, Xiao L, Ren H, et al. Impact of smoking cessation on global gene expression in the bronchial epithelium of chronic smokers. Cancer Prev Res. 2008;1(2):112–8.CrossRef Zhang L, Lee JJ, Tang H, Fan Y-H, Xiao L, Ren H, et al. Impact of smoking cessation on global gene expression in the bronchial epithelium of chronic smokers. Cancer Prev Res. 2008;1(2):112–8.CrossRef
13.
go back to reference Bahrami S, Drabløs F. Gene regulation in the immediate-early response process. Adv Biol Regul. 2016;62:37–49.PubMedCrossRef Bahrami S, Drabløs F. Gene regulation in the immediate-early response process. Adv Biol Regul. 2016;62:37–49.PubMedCrossRef
14.
go back to reference Watson RJ, Clements JB. A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature. 1980;285(5763):329–30.PubMedCrossRef Watson RJ, Clements JB. A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature. 1980;285(5763):329–30.PubMedCrossRef
15.
16.
go back to reference Rodgman A, Perfetti TA. The chemical components of tobacco and tobacco smoke. New York: CRC Press; 2013. Rodgman A, Perfetti TA. The chemical components of tobacco and tobacco smoke. New York: CRC Press; 2013.
17.
go back to reference Fowles J, Dybing E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob Control. 2003;12(4):424–30.PubMedPubMedCentralCrossRef Fowles J, Dybing E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob Control. 2003;12(4):424–30.PubMedPubMedCentralCrossRef
18.
go back to reference Thorne D, Adamson J. A review of in vitro cigarette smoke exposure systems. Exp Toxicol Pathol. 2013;65(7–8):1183–93.PubMedCrossRef Thorne D, Adamson J. A review of in vitro cigarette smoke exposure systems. Exp Toxicol Pathol. 2013;65(7–8):1183–93.PubMedCrossRef
19.
go back to reference Mathis C, Poussin C, Weisensee D, Gebel S, Hengstermann A, Sewer A, et al. Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers. Am J Physiol Lung Cell Mol Physiol. 2013;304(7):L489-503.PubMedPubMedCentralCrossRef Mathis C, Poussin C, Weisensee D, Gebel S, Hengstermann A, Sewer A, et al. Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers. Am J Physiol Lung Cell Mol Physiol. 2013;304(7):L489-503.PubMedPubMedCentralCrossRef
20.
go back to reference Amatngalim GD, van Wijck Y, de Mooij-Eijk Y, Verhoosel RM, Harder J, Lekkerkerker AN, et al. Basal cells contribute to innate immunity of the airway epithelium through production of the antimicrobial protein RNase 7. J Immunol. 2015;194(7):3340–50.PubMedCrossRef Amatngalim GD, van Wijck Y, de Mooij-Eijk Y, Verhoosel RM, Harder J, Lekkerkerker AN, et al. Basal cells contribute to innate immunity of the airway epithelium through production of the antimicrobial protein RNase 7. J Immunol. 2015;194(7):3340–50.PubMedCrossRef
21.
go back to reference Hiemstra PS, Tetley TD, Janes SM. Airway and alveolar epithelial cells in culture. Eur Respir J. 2019;54:5. Hiemstra PS, Tetley TD, Janes SM. Airway and alveolar epithelial cells in culture. Eur Respir J. 2019;54:5.
22.
go back to reference Aliee H, Theis F. AutoGeneS: Automatic gene selection using multi-objective optimization for RNA-seq deconvolution. bioRxiv. 2020:2020.02.21.940650. Aliee H, Theis F. AutoGeneS: Automatic gene selection using multi-objective optimization for RNA-seq deconvolution. bioRxiv. 2020:2020.02.21.940650.
23.
go back to reference Imkamp K, Berg M, Vermeulen CJ, Heijink IH, Guryev V, Kerstjens HAM, et al. Nasal epithelium as a proxy for bronchial epithelium for smoking-induced gene expression and expression Quantitative Trait Loci. J Allergy Clin Immunol. 2018;142(1):314-7.e15.PubMedCrossRef Imkamp K, Berg M, Vermeulen CJ, Heijink IH, Guryev V, Kerstjens HAM, et al. Nasal epithelium as a proxy for bronchial epithelium for smoking-induced gene expression and expression Quantitative Trait Loci. J Allergy Clin Immunol. 2018;142(1):314-7.e15.PubMedCrossRef
24.
go back to reference Willemse BW, ten Hacken NH, Rutgers B, Lesman-Leegte IG, Postma DS, Timens W. Effect of 1-year smoking cessation on airway inflammation in COPD and asymptomatic smokers. Eur Respir J. 2005;26(5):835–45.PubMedCrossRef Willemse BW, ten Hacken NH, Rutgers B, Lesman-Leegte IG, Postma DS, Timens W. Effect of 1-year smoking cessation on airway inflammation in COPD and asymptomatic smokers. Eur Respir J. 2005;26(5):835–45.PubMedCrossRef
25.
go back to reference Faiz A, Rathnayake SNH, Vermeulen C, Timens W, Kooistra W, Oliver B, et al. Longitudinal effects of smoking cessation on DNA methylation in bronchial biopsies of COPD and asymptomatic smokers. Eur Respir J. 2019;54(63):5413. Faiz A, Rathnayake SNH, Vermeulen C, Timens W, Kooistra W, Oliver B, et al. Longitudinal effects of smoking cessation on DNA methylation in bronchial biopsies of COPD and asymptomatic smokers. Eur Respir J. 2019;54(63):5413.
26.
go back to reference Duclos GE, Teixeira VH, Autissier P, Gesthalter YB, Reinders-Luinge MA, Terrano R, et al. Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution. Sci Adv. 2019;5(12):eaaw3413.PubMedPubMedCentralCrossRef Duclos GE, Teixeira VH, Autissier P, Gesthalter YB, Reinders-Luinge MA, Terrano R, et al. Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution. Sci Adv. 2019;5(12):eaaw3413.PubMedPubMedCentralCrossRef
27.
go back to reference Moses E, Wang T, Corbett S, Jackson GR, Drizik E, Perdomo C, et al. Molecular impact of electronic cigarette aerosol exposure in human bronchial epithelium. Toxicol Sci. 2017;155(1):248–57.PubMedCrossRef Moses E, Wang T, Corbett S, Jackson GR, Drizik E, Perdomo C, et al. Molecular impact of electronic cigarette aerosol exposure in human bronchial epithelium. Toxicol Sci. 2017;155(1):248–57.PubMedCrossRef
28.
go back to reference Corbett SE, Nitzberg M, Moses E, Kleerup E, Wang T, Perdomo C, et al. Gene expression alterations in the bronchial epithelium of e-cigarette users. Chest. 2019;156(4):764–73.PubMedPubMedCentralCrossRef Corbett SE, Nitzberg M, Moses E, Kleerup E, Wang T, Perdomo C, et al. Gene expression alterations in the bronchial epithelium of e-cigarette users. Chest. 2019;156(4):764–73.PubMedPubMedCentralCrossRef
29.
go back to reference Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem. 2004;279(23):23847–50.PubMedCrossRef Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem. 2004;279(23):23847–50.PubMedCrossRef
30.
go back to reference Bock KW. Homeostatic control of xeno- and endobiotics in the drug-metabolizing enzyme system. Biochem Pharmacol. 2014;90(1):1–6.PubMedCrossRef Bock KW. Homeostatic control of xeno- and endobiotics in the drug-metabolizing enzyme system. Biochem Pharmacol. 2014;90(1):1–6.PubMedCrossRef
31.
go back to reference Olagnier D, Brandtoft AM, Gunderstofte C, Villadsen NL, Krapp C, Thielke AL, et al. Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nat Commun. 2018;9(1):3506.PubMedPubMedCentralCrossRef Olagnier D, Brandtoft AM, Gunderstofte C, Villadsen NL, Krapp C, Thielke AL, et al. Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nat Commun. 2018;9(1):3506.PubMedPubMedCentralCrossRef
32.
go back to reference Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2003;284(4):L566–77.PubMedCrossRef Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2003;284(4):L566–77.PubMedCrossRef
33.
go back to reference Yoshida M, Minagawa S, Araya J, Sakamoto T, Hara H, Tsubouchi K, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):1–14.CrossRef Yoshida M, Minagawa S, Araya J, Sakamoto T, Hara H, Tsubouchi K, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):1–14.CrossRef
34.
go back to reference Araya J, Tsubouchi K, Sato N, Ito S, Minagawa S, Hara H, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy. 2019;15(3):510–26.PubMedCrossRef Araya J, Tsubouchi K, Sato N, Ito S, Minagawa S, Hara H, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy. 2019;15(3):510–26.PubMedCrossRef
36.
go back to reference Niture SK, Jaiswal AK. 2.26 - Antioxidant Induction of Gene Expression. In: McQueen CA, editor. Comprehensive Toxicology. 2nd ed. Oxford: Elsevier; 2010. p. 523–8.CrossRef Niture SK, Jaiswal AK. 2.26 - Antioxidant Induction of Gene Expression. In: McQueen CA, editor. Comprehensive Toxicology. 2nd ed. Oxford: Elsevier; 2010. p. 523–8.CrossRef
37.
go back to reference Dragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS. IL-17 enhances IL-1β-mediated CXCL-8 release from human airway smooth muscle cells. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2007;292(4):L1023–9.PubMedCrossRef Dragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS. IL-17 enhances IL-1β-mediated CXCL-8 release from human airway smooth muscle cells. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2007;292(4):L1023–9.PubMedCrossRef
38.
go back to reference Amatngalim GD, Schrumpf JA, Henic A, Dronkers E, Verhoosel RM, Ordonez SR, et al. Antibacterial defense of human airway epithelial cells from chronic obstructive pulmonary disease patients induced by acute exposure to nontypeable haemophilus influenzae: modulation by cigarette smoke. J Innate Immun. 2017;9(4):359–74.PubMedPubMedCentralCrossRef Amatngalim GD, Schrumpf JA, Henic A, Dronkers E, Verhoosel RM, Ordonez SR, et al. Antibacterial defense of human airway epithelial cells from chronic obstructive pulmonary disease patients induced by acute exposure to nontypeable haemophilus influenzae: modulation by cigarette smoke. J Innate Immun. 2017;9(4):359–74.PubMedPubMedCentralCrossRef
39.
go back to reference Avila Cobos F, Vandesompele J, Mestdagh P, De Preter K. Computational deconvolution of transcriptomics data from mixed cell populations. Bioinformatics. 2018;34(11):1969–79.PubMedCrossRef Avila Cobos F, Vandesompele J, Mestdagh P, De Preter K. Computational deconvolution of transcriptomics data from mixed cell populations. Bioinformatics. 2018;34(11):1969–79.PubMedCrossRef
40.
go back to reference Boei J, Vermeulen S, Klein B, Hiemstra PS, Verhoosel RM, Jennen DGJ, et al. Xenobiotic metabolism in differentiated human bronchial epithelial cells. Arch Toxicol. 2017;91(5):2093–105.PubMedCrossRef Boei J, Vermeulen S, Klein B, Hiemstra PS, Verhoosel RM, Jennen DGJ, et al. Xenobiotic metabolism in differentiated human bronchial epithelial cells. Arch Toxicol. 2017;91(5):2093–105.PubMedCrossRef
41.
go back to reference Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013–22.PubMedCrossRef Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013–22.PubMedCrossRef
42.
go back to reference Aghapour M, Remels AH, Pouwels SD, Bruder D, Hiemstra PS, Cloonan SM, et al. Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2020;318(1):L149–64.PubMedCrossRef Aghapour M, Remels AH, Pouwels SD, Bruder D, Hiemstra PS, Cloonan SM, et al. Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2020;318(1):L149–64.PubMedCrossRef
44.
go back to reference Ito S, Araya J, Kurita Y, Kobayashi K, Takasaka N, Yoshida M, et al. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy. 2015;11(3):547–59.PubMedPubMedCentralCrossRef Ito S, Araya J, Kurita Y, Kobayashi K, Takasaka N, Yoshida M, et al. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy. 2015;11(3):547–59.PubMedPubMedCentralCrossRef
45.
go back to reference Herr C, Tsitouras K, Niederstraßer J, Backes C, Beisswenger C, Dong L, et al. Cigarette smoke and electronic cigarettes differentially activate bronchial epithelial cells. Respir Res. 2020;21(1):67.PubMedPubMedCentralCrossRef Herr C, Tsitouras K, Niederstraßer J, Backes C, Beisswenger C, Dong L, et al. Cigarette smoke and electronic cigarettes differentially activate bronchial epithelial cells. Respir Res. 2020;21(1):67.PubMedPubMedCentralCrossRef
46.
go back to reference Kim V, Jeong S, Zhao H, Kesimer M, Boucher RC, Wells JM, et al. Current smoking with or without chronic bronchitis is independently associated with goblet cell hyperplasia in healthy smokers and COPD subjects. Sci Rep. 2020;10(1):20133.PubMedPubMedCentralCrossRef Kim V, Jeong S, Zhao H, Kesimer M, Boucher RC, Wells JM, et al. Current smoking with or without chronic bronchitis is independently associated with goblet cell hyperplasia in healthy smokers and COPD subjects. Sci Rep. 2020;10(1):20133.PubMedPubMedCentralCrossRef
47.
go back to reference Saetta M, Turato G, Baraldo S, Zanin A, Braccioni F, Mapp CE, et al. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med. 2000;161(3 Pt 1):1016–21.PubMedCrossRef Saetta M, Turato G, Baraldo S, Zanin A, Braccioni F, Mapp CE, et al. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med. 2000;161(3 Pt 1):1016–21.PubMedCrossRef
Metadata
Title
Early transcriptional responses of bronchial epithelial cells to whole cigarette smoke mirror those of in-vivo exposed human bronchial mucosa
Authors
Anne M. van der Does
Rashad M. Mahbub
Dennis K. Ninaber
Senani N. H. Rathnayake
Wim Timens
Maarten van den Berge
Hananeh Aliee
Fabian J. Theis
Martijn C. Nawijn
Pieter S. Hiemstra
Alen Faiz
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2022
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-022-02150-2

Other articles of this Issue 1/2022

Respiratory Research 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.