Skip to main content
Top
Published in: Journal of Medical Systems 6/2016

01-06-2016 | Patient Facing Systems

Smartphone-Based Patients’ Activity Recognition by Using a Self-Learning Scheme for Medical Monitoring

Authors: Junqi Guo, Xi Zhou, Yunchuan Sun, Gong Ping, Guoxing Zhao, Zhuorong Li

Published in: Journal of Medical Systems | Issue 6/2016

Login to get access

Abstract

Smartphone based activity recognition has recently received remarkable attention in various applications of mobile health such as safety monitoring, fitness tracking, and disease prediction. To achieve more accurate and simplified medical monitoring, this paper proposes a self-learning scheme for patients’ activity recognition, in which a patient only needs to carry an ordinary smartphone that contains common motion sensors. After the real-time data collection though this smartphone, we preprocess the data using coordinate system transformation to eliminate phone orientation influence. A set of robust and effective features are then extracted from the preprocessed data. Because a patient may inevitably perform various unpredictable activities that have no apriori knowledge in the training dataset, we propose a self-learning activity recognition scheme. The scheme determines whether there are apriori training samples and labeled categories in training pools that well match with unpredictable activity data. If not, it automatically assembles these unpredictable samples into different clusters and gives them new category labels. These clustered samples combined with the acquired new category labels are then merged into the training dataset to reinforce recognition ability of the self-learning model. In experiments, we evaluate our scheme using the data collected from two postoperative patient volunteers, including six labeled daily activities as the initial apriori categories in the training pool. Experimental results demonstrate that the proposed self-learning scheme for activity recognition works very well for most cases. When there exist several types of unseen activities without any apriori information, the accuracy reaches above 80 % after the self-learning process converges.
Appendix
Available only for authorised users
Literature
1.
go back to reference Győrbíró, N., Fábián, Á., and Hományi, G., An activity recognition system for mobile phones[J]. Mobile Netw Appl 14(1):82–91, 2009.CrossRef Győrbíró, N., Fábián, Á., and Hományi, G., An activity recognition system for mobile phones[J]. Mobile Netw Appl 14(1):82–91, 2009.CrossRef
2.
go back to reference Arif, M., Bilal, M., Kattan, A., et al., Better physical activity classification using Smartphone acceleration sensor[J]. J Med Syst 38(9):1–10, 2014.CrossRef Arif, M., Bilal, M., Kattan, A., et al., Better physical activity classification using Smartphone acceleration sensor[J]. J Med Syst 38(9):1–10, 2014.CrossRef
3.
go back to reference Moran, A. L., Ramrez-Fernandez, C., Meza-Kubo, V., Orihuela-Espina, F., Garca-Canseco, E., Grimaldo, A. I., and Sucar, E., On the e_ect ofprevious technological experience on the usability of a virtual rehabilitation tool forthe physical activation and cognitive stimulation of elders. J Med Syst 39(9):1–11, 2015.CrossRef Moran, A. L., Ramrez-Fernandez, C., Meza-Kubo, V., Orihuela-Espina, F., Garca-Canseco, E., Grimaldo, A. I., and Sucar, E., On the e_ect ofprevious technological experience on the usability of a virtual rehabilitation tool forthe physical activation and cognitive stimulation of elders. J Med Syst 39(9):1–11, 2015.CrossRef
4.
go back to reference Poppe, R., A survey on vision-based human action recognition[J]. Image Vis Comput 28(6):976–990, 2010.CrossRef Poppe, R., A survey on vision-based human action recognition[J]. Image Vis Comput 28(6):976–990, 2010.CrossRef
5.
go back to reference Turaga, P., Chellappa, R., Subrahmanian, V. S., et al., Machine recognition of human activities: A survey[J]. IEEE Trans Circ Syst Video Technol 18(11):1473–1488, 2008.CrossRef Turaga, P., Chellappa, R., Subrahmanian, V. S., et al., Machine recognition of human activities: A survey[J]. IEEE Trans Circ Syst Video Technol 18(11):1473–1488, 2008.CrossRef
6.
go back to reference Bao, L., and Intille, S. S., Activity recognition from user-annotated acceleration data[M]//Pervasive computing. Springer, Berlin Heidelberg, pp. 1–17, 2004. Bao, L., and Intille, S. S., Activity recognition from user-annotated acceleration data[M]//Pervasive computing. Springer, Berlin Heidelberg, pp. 1–17, 2004.
7.
go back to reference Maurer, U., Rowe, A., Smailagic, A., et al., Location and activity recognition using eWatch: A wearable sensor platform[M]//Ambient Intelligence in Everyday Life. Springer: BerlinHeidelberg: 86–102, 2006. Maurer, U., Rowe, A., Smailagic, A., et al., Location and activity recognition using eWatch: A wearable sensor platform[M]//Ambient Intelligence in Everyday Life. Springer: BerlinHeidelberg: 86–102, 2006.
8.
go back to reference Maurer, U., Smailagic, A., Siewiorek, D. P., et al., Activity recognition and monitoring using multiple sensors on different body positions[C]//Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on. IEEE, 4 pp.-116, 2006. Maurer, U., Smailagic, A., Siewiorek, D. P., et al., Activity recognition and monitoring using multiple sensors on different body positions[C]//Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on. IEEE, 4 pp.-116, 2006.
9.
go back to reference Incel, O. D., Kose, M., and Ersoy, C., A review and taxonomy of activity recognition on mobile phones[J]. Bio Nano Sci 3(2):145–171, 2013. Incel, O. D., Kose, M., and Ersoy, C., A review and taxonomy of activity recognition on mobile phones[J]. Bio Nano Sci 3(2):145–171, 2013.
10.
go back to reference Keally, M., Zhou, G., Xing, G., et al., Pbn: towards practical activity recognition using smartphone-based body sensor networks[C]//Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems. ACM: 246–259, 2011. Keally, M., Zhou, G., Xing, G., et al., Pbn: towards practical activity recognition using smartphone-based body sensor networks[C]//Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems. ACM: 246–259, 2011.
11.
go back to reference Blanke, U., Schiele, B., Sensing location in the pocket[J]. Ubicomp Poster Session. 2, 2008. Blanke, U., Schiele, B., Sensing location in the pocket[J]. Ubicomp Poster Session. 2, 2008.
12.
go back to reference Yang, J., Toward physical activity diary: motion recognition using simple acceleration features with mobile phones[C]//Proceedings of the 1st international workshop on Interactive multimedia for consumer electronics. ACM: 1–10, 2009. Yang, J., Toward physical activity diary: motion recognition using simple acceleration features with mobile phones[C]//Proceedings of the 1st international workshop on Interactive multimedia for consumer electronics. ACM: 1–10, 2009.
13.
go back to reference Khan, M., Ahamed, S. I., Rahman, M., et al., A feature extraction method for realtime human activity recognition on cell phones[C]//Proceedings of 3rd International Symposium on Quality of Life Technology (isQoLT 2011). Toronto, Canada. 2011. Khan, M., Ahamed, S. I., Rahman, M., et al., A feature extraction method for realtime human activity recognition on cell phones[C]//Proceedings of 3rd International Symposium on Quality of Life Technology (isQoLT 2011). Toronto, Canada. 2011.
14.
go back to reference Thiemjarus, S., A device-orientation independent method for activity recognition[C]//Body Sensor Networks (BSN), 2010 International Conference on. IEEE. 19–23, 2010. Thiemjarus, S., A device-orientation independent method for activity recognition[C]//Body Sensor Networks (BSN), 2010 International Conference on. IEEE. 19–23, 2010.
15.
go back to reference Theekakul, P., Thiemjarus, S., Nantajeewarawat, E., et al., A rule-based approach to activity recognition[M]//Knowledge, Information, and Creativity Support Systems. Springer, Berlin Heidelberg, pp. 204–215, 2011. Theekakul, P., Thiemjarus, S., Nantajeewarawat, E., et al., A rule-based approach to activity recognition[M]//Knowledge, Information, and Creativity Support Systems. Springer, Berlin Heidelberg, pp. 204–215, 2011.
16.
go back to reference Sun, L., Zhang, D., Li, B., et al., Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations[M]//Ubiquitous intelligence and computing. Springer, Berlin Heidelberg, pp. 548–562, 2010. Sun, L., Zhang, D., Li, B., et al., Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations[M]//Ubiquitous intelligence and computing. Springer, Berlin Heidelberg, pp. 548–562, 2010.
17.
go back to reference Henpraserttae, A., Thiemjarus, S., Marukatat, S., Accurate activity recognition using a mobile phone regardless of device orientation and location[C]//Body Sensor Networks (BSN), 2011 International Conference on. IEEE. 41–46, 2011. Henpraserttae, A., Thiemjarus, S., Marukatat, S., Accurate activity recognition using a mobile phone regardless of device orientation and location[C]//Body Sensor Networks (BSN), 2011 International Conference on. IEEE. 41–46, 2011.
18.
go back to reference Cheng, H. T., Sun, F. T., Griss, M., et al., Nuactiv: Recognizing unseen new activities using semantic attribute-based learning[C]//Proceeding of the 11th annual international conference on Mobile systems, applications, and services. ACM. 361–374, 2013. Cheng, H. T., Sun, F. T., Griss, M., et al., Nuactiv: Recognizing unseen new activities using semantic attribute-based learning[C]//Proceeding of the 11th annual international conference on Mobile systems, applications, and services. ACM. 361–374, 2013.
19.
go back to reference Yin, J., Yang, Q., and Pan, J. J., Sensor-based abnormal human-activity detection[J]. IEEE Trans Knowl Data Eng 20(8):1082–1090, 2008.CrossRef Yin, J., Yang, Q., and Pan, J. J., Sensor-based abnormal human-activity detection[J]. IEEE Trans Knowl Data Eng 20(8):1082–1090, 2008.CrossRef
20.
go back to reference Ho, Y., Lu, C., Chen, I., et al., Active-learning assisted self-reconfigurable activity recognition in a dynamic environment[C]//Proceedings of the 2009 I.E. international conference on Robotics and Automation. IEEE Press: 1567–1572, 2009. Ho, Y., Lu, C., Chen, I., et al., Active-learning assisted self-reconfigurable activity recognition in a dynamic environment[C]//Proceedings of the 2009 I.E. international conference on Robotics and Automation. IEEE Press: 1567–1572, 2009.
21.
go back to reference Ustev, Y. E., Durmaz, I. O., Ersoy, C., User, device and orientation independent human activity recognition on mobile phones: Challenges and a proposal[C]//Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication. ACM: 1427–1436, 2013. Ustev, Y. E., Durmaz, I. O., Ersoy, C., User, device and orientation independent human activity recognition on mobile phones: Challenges and a proposal[C]//Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication. ACM: 1427–1436, 2013.
22.
go back to reference Anguita, D., Ghio, A., Oneto, L., et al., A public domain dataset for human activity recognition using smartphones[C]//European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN. 2013. Anguita, D., Ghio, A., Oneto, L., et al., A public domain dataset for human activity recognition using smartphones[C]//European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN. 2013.
23.
go back to reference Müller, M., Dynamic time warping[J]. Inform Retr Music Motion. 69–84, 2007. Müller, M., Dynamic time warping[J]. Inform Retr Music Motion. 69–84, 2007.
24.
go back to reference Foley, D. H., and Sammon, J. W., Jr., An optimal set of discriminant vectors[J]. IEEE Trans Comput 100(3):281–289, 1975.CrossRef Foley, D. H., and Sammon, J. W., Jr., An optimal set of discriminant vectors[J]. IEEE Trans Comput 100(3):281–289, 1975.CrossRef
25.
go back to reference Guo, Y. F., Wu, L., Lu, H., et al., Null Foley–Sammon transform[J]. Pattern Recogn 39(11):2248–2251, 2006.CrossRef Guo, Y. F., Wu, L., Lu, H., et al., Null Foley–Sammon transform[J]. Pattern Recogn 39(11):2248–2251, 2006.CrossRef
27.
go back to reference Ho, T. K., The random subspace method for constructing decision forests[J]. IEEE Trans Pattern Anal Mach Intell 20(8):832–844, 1998.CrossRef Ho, T. K., The random subspace method for constructing decision forests[J]. IEEE Trans Pattern Anal Mach Intell 20(8):832–844, 1998.CrossRef
28.
go back to reference Van der Maaten, L., and Hinton, G., Visualizing data using t-SNE[J]. J Mach Learn Res 9(2579–2605):85, 2008. Van der Maaten, L., and Hinton, G., Visualizing data using t-SNE[J]. J Mach Learn Res 9(2579–2605):85, 2008.
29.
go back to reference Ester, M., Kriegel, H. P., Sander, J., et al., A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Kdd. 96(34): 226–231, 1996. Ester, M., Kriegel, H. P., Sander, J., et al., A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Kdd. 96(34): 226–231, 1996.
30.
go back to reference Schölkopf, B., Platt, J. C., Shawe-Taylor, J., et al., Estimating the support of a high-dimensional distribution[J]. Neural Comput 13(7):1443–1471, 2001.CrossRefPubMed Schölkopf, B., Platt, J. C., Shawe-Taylor, J., et al., Estimating the support of a high-dimensional distribution[J]. Neural Comput 13(7):1443–1471, 2001.CrossRefPubMed
31.
go back to reference Ko, H., Baran, R., Arozullah, M., Neural network based novelty filtering for signal detection enhancement[C]//Circuits and Systems, 1992., Proceedings of the 35th Midwest Symposium on. IEEE: 252–255, 1992. Ko, H., Baran, R., Arozullah, M., Neural network based novelty filtering for signal detection enhancement[C]//Circuits and Systems, 1992., Proceedings of the 35th Midwest Symposium on. IEEE: 252–255, 1992.
32.
go back to reference Bishop, C. M., Novelty detection and neural network validation[C]//Vision, Image and Signal Processing, IEE Proceedings-. IET. 141(4): 217–222, 1994. Bishop, C. M., Novelty detection and neural network validation[C]//Vision, Image and Signal Processing, IEE Proceedings-. IET. 141(4): 217–222, 1994.
33.
go back to reference Muñoz, A., and Muruzábal, J., Self-organizing maps for outlier detection[J]. Neurocomputing 18(1):33–60, 1998.CrossRef Muñoz, A., and Muruzábal, J., Self-organizing maps for outlier detection[J]. Neurocomputing 18(1):33–60, 1998.CrossRef
34.
go back to reference Zheng, W., Zhao, L., and Zou, C., Foley-Sammon optimal discriminant vectors using kernel approach[J]. IEEE Trans Neural Netw 16(1):1–9, 2005.CrossRefPubMed Zheng, W., Zhao, L., and Zou, C., Foley-Sammon optimal discriminant vectors using kernel approach[J]. IEEE Trans Neural Netw 16(1):1–9, 2005.CrossRefPubMed
35.
go back to reference Lin, Y., Gu, G., Liu, H., et al., Kernel null foley-sammon transform[C]//Computer Science and Software Engineering, 2008 International Conference on. IEEE. 1: 981–984, 2008. Lin, Y., Gu, G., Liu, H., et al., Kernel null foley-sammon transform[C]//Computer Science and Software Engineering, 2008 International Conference on. IEEE. 1: 981–984, 2008.
36.
go back to reference Kwapisz, J. R., Weiss, G. M., and Moore, S. A., Activity recognition using cell phone accelerometers[J]. ACM SigKDD Explorations Newsl 12(2):74–82, 2011.CrossRef Kwapisz, J. R., Weiss, G. M., and Moore, S. A., Activity recognition using cell phone accelerometers[J]. ACM SigKDD Explorations Newsl 12(2):74–82, 2011.CrossRef
Metadata
Title
Smartphone-Based Patients’ Activity Recognition by Using a Self-Learning Scheme for Medical Monitoring
Authors
Junqi Guo
Xi Zhou
Yunchuan Sun
Gong Ping
Guoxing Zhao
Zhuorong Li
Publication date
01-06-2016
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 6/2016
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-016-0497-2

Other articles of this Issue 6/2016

Journal of Medical Systems 6/2016 Go to the issue