Skip to main content
Top
Published in: Journal of Medical Systems 6/2016

01-06-2016 | Systems-Level Quality Improvement

Detection of Cardiac Abnormalities from Multilead ECG using Multiscale Phase Alternation Features

Authors: R. K. Tripathy, S. Dandapat

Published in: Journal of Medical Systems | Issue 6/2016

Login to get access

Abstract

The cardiac activities such as the depolarization and the relaxation of atria and ventricles are observed in electrocardiogram (ECG). The changes in the morphological features of ECG are the symptoms of particular heart pathology. It is a cumbersome task for medical experts to visually identify any subtle changes in the morphological features during 24 hours of ECG recording. Therefore, the automated analysis of ECG signal is a need for accurate detection of cardiac abnormalities. In this paper, a novel method for automated detection of cardiac abnormalities from multilead ECG is proposed. The method uses multiscale phase alternation (PA) features of multilead ECG and two classifiers, k-nearest neighbor (KNN) and fuzzy KNN for classification of bundle branch block (BBB), myocardial infarction (MI), heart muscle defect (HMD) and healthy control (HC). The dual tree complex wavelet transform (DTCWT) is used to decompose the ECG signal of each lead into complex wavelet coefficients at different scales. The phase of the complex wavelet coefficients is computed and the PA values at each wavelet scale are used as features for detection and classification of cardiac abnormalities. A publicly available multilead ECG database (PTB database) is used for testing of the proposed method. The experimental results show that, the proposed multiscale PA features and the fuzzy KNN classifier have better performance for detection of cardiac abnormalities with sensitivity values of 78.12 %, 80.90 % and 94.31 % for BBB, HMD and MI classes. The sensitivity value of proposed method for MI class is compared with the state-of-art techniques from multilead ECG.
Literature
1.
go back to reference Drezner, J. A., Ashley, E., Baggish, A. L., Börjesson, M., Corrado, D., Owens, D. S., Patel, A., Pelliccia, A., Vetter, V. L., Ackerman, M. J., et al. Abnormal electrocardiographic findings in athletes: recognising changes suggestive of cardiomyopathy. Br. J. Sports Med. 47(3):137–152, 2013. Drezner, J. A., Ashley, E., Baggish, A. L., Börjesson, M., Corrado, D., Owens, D. S., Patel, A., Pelliccia, A., Vetter, V. L., Ackerman, M. J., et al. Abnormal electrocardiographic findings in athletes: recognising changes suggestive of cardiomyopathy. Br. J. Sports Med. 47(3):137–152, 2013.
2.
go back to reference Goldberger, A. L. Clinical electrocardiography: a simplified approach: Elsevier Health Sciences, 2012. Goldberger, A. L. Clinical electrocardiography: a simplified approach: Elsevier Health Sciences, 2012.
3.
go back to reference Thygesen, K., Alpert, J. S., Jaffe, A. S., White, H. D., Simoons, M. L., Chaitman, B. R., Katus, H. A., Apple, F. S., Lindahl, B., Morrow, D. A., et al., Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 60(16):1581–1598, 2012. Thygesen, K., Alpert, J. S., Jaffe, A. S., White, H. D., Simoons, M. L., Chaitman, B. R., Katus, H. A., Apple, F. S., Lindahl, B., Morrow, D. A., et al., Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 60(16):1581–1598, 2012.
4.
go back to reference Sharma, L., Tripathy, R., and Dandapat, S., Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Trans. Biomed. Eng. 62(7):1827–1837, 2015.CrossRefPubMed Sharma, L., Tripathy, R., and Dandapat, S., Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Trans. Biomed. Eng. 62(7):1827–1837, 2015.CrossRefPubMed
5.
go back to reference Martis, R. J., Acharya, U. R., and Adeli, H., Current methods in electrocardiogram characterization. Comput. Biol. Med. 48:133–149, 2014.CrossRefPubMed Martis, R. J., Acharya, U. R., and Adeli, H., Current methods in electrocardiogram characterization. Comput. Biol. Med. 48:133–149, 2014.CrossRefPubMed
6.
go back to reference Lin, B. -S., Wong, A. M., and Tseng, K. C., Community-based ecg monitoring system for patients with cardiovascular diseases. J. Med. Syst. 40(4):1–12, 2016. Lin, B. -S., Wong, A. M., and Tseng, K. C., Community-based ecg monitoring system for patients with cardiovascular diseases. J. Med. Syst. 40(4):1–12, 2016.
7.
go back to reference Alshraideh, H., Otoom, M., Al-Araida, A., Bawaneh, H., and Bravo, J., A web based cardiovascular disease detection system. J. Med. Syst. 39(10):1–6, 2015.CrossRef Alshraideh, H., Otoom, M., Al-Araida, A., Bawaneh, H., and Bravo, J., A web based cardiovascular disease detection system. J. Med. Syst. 39(10):1–6, 2015.CrossRef
8.
go back to reference Rahman, Q. A., Tereshchenko, L. G., Kongkatong, M., Abraham, T., Abraham, M. R., and Shatkay, H., Utilizing ecg-based heartbeat classification for hypertrophic cardiomyopathy identification. IEEE Trans. NanoBioscience 14(5):505–512, 2015.CrossRefPubMed Rahman, Q. A., Tereshchenko, L. G., Kongkatong, M., Abraham, T., Abraham, M. R., and Shatkay, H., Utilizing ecg-based heartbeat classification for hypertrophic cardiomyopathy identification. IEEE Trans. NanoBioscience 14(5):505–512, 2015.CrossRefPubMed
9.
go back to reference Arif, M., Malagore, I. A., and Afsar, F. A., Detection and localization of myocardial infarction using k-nearest neighbor classifier. J. Med. Syst. 36(1):279–289, 2012.CrossRefPubMed Arif, M., Malagore, I. A., and Afsar, F. A., Detection and localization of myocardial infarction using k-nearest neighbor classifier. J. Med. Syst. 36(1):279–289, 2012.CrossRefPubMed
10.
go back to reference Lu, H., Ong, K., and Chia, P., An automated ecg classification system based on a neuro-fuzzy system. In: Computers in Cardiology 2000, pp. 387–390: IEEE (2000) Lu, H., Ong, K., and Chia, P., An automated ecg classification system based on a neuro-fuzzy system. In: Computers in Cardiology 2000, pp. 387–390: IEEE (2000)
11.
go back to reference Sun, L., Lu, Y., Yang, K., and Li, S., Ecg analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12):3348–3356, 2012.CrossRefPubMed Sun, L., Lu, Y., Yang, K., and Li, S., Ecg analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12):3348–3356, 2012.CrossRefPubMed
12.
go back to reference Liu, B., Liu, J., Wang, G., Huang, K., Li, F., Zheng, Y., Luo, Y., and Zhou, F., A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection. Comput. Biol. Med. 61:178–184, 2015.CrossRefPubMed Liu, B., Liu, J., Wang, G., Huang, K., Li, F., Zheng, Y., Luo, Y., and Zhou, F., A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection. Comput. Biol. Med. 61:178–184, 2015.CrossRefPubMed
13.
go back to reference Alickovic, E., and Subasi, A., Medical decision support system for diagnosis of heart arrhythmia using dwt and random forests classifier. J. Med. Syst. 40(4):1–12, 2016.CrossRef Alickovic, E., and Subasi, A., Medical decision support system for diagnosis of heart arrhythmia using dwt and random forests classifier. J. Med. Syst. 40(4):1–12, 2016.CrossRef
14.
go back to reference Jayachandran, E. et al., Analysis of myocardial infarction using discrete wavelet transform. J. Med. Syst. 34(6):985–992, 2010.CrossRefPubMed Jayachandran, E. et al., Analysis of myocardial infarction using discrete wavelet transform. J. Med. Syst. 34(6):985–992, 2010.CrossRefPubMed
15.
go back to reference Haraldsson, H., Edenbrandt, L., and Ohlsson, M., Detecting acute myocardial infarction in the 12-lead ecg using hermite expansions and neural networks. Artif. Intell. Med. 32(2):127–136, 2004.CrossRefPubMed Haraldsson, H., Edenbrandt, L., and Ohlsson, M., Detecting acute myocardial infarction in the 12-lead ecg using hermite expansions and neural networks. Artif. Intell. Med. 32(2):127–136, 2004.CrossRefPubMed
16.
go back to reference Acharya, U. R., Fujita, H., Sudarshan, V. K., Oh, S. L., Adam, M., Koh, J. E., Tan, J. H., Ghista, D. N., Martis, R. J., Chua, C. K., et al., Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowl.-Based Syst. 99:146–156, 2016. Acharya, U. R., Fujita, H., Sudarshan, V. K., Oh, S. L., Adam, M., Koh, J. E., Tan, J. H., Ghista, D. N., Martis, R. J., Chua, C. K., et al., Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowl.-Based Syst. 99:146–156, 2016.
17.
go back to reference Lahiri, T., Kumar, U., Mishra, H., Sarkar, S., and Das Roy, A., Analysis of ecg signal by chaos principle to help automatic diagnosis of myocardial infarction. J. Sci. Ind. Res. 68(10):866, 2009. Lahiri, T., Kumar, U., Mishra, H., Sarkar, S., and Das Roy, A., Analysis of ecg signal by chaos principle to help automatic diagnosis of myocardial infarction. J. Sci. Ind. Res. 68(10):866, 2009.
18.
go back to reference Safdarian, N., Dabanloo, N. J., and Attarodi, G., A new pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ecg signal. J. Biomed. Sci. Eng. 7(10):818, 2014.CrossRef Safdarian, N., Dabanloo, N. J., and Attarodi, G., A new pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ecg signal. J. Biomed. Sci. Eng. 7(10):818, 2014.CrossRef
19.
go back to reference Tripathy, R., Sharma, L., and Dandapat, S., A new way of quantifying diagnostic information from multilead electrocardiogram for cardiac disease classification. Healthcare Technol. Lett. 1(4):98, 2014.CrossRef Tripathy, R., Sharma, L., and Dandapat, S., A new way of quantifying diagnostic information from multilead electrocardiogram for cardiac disease classification. Healthcare Technol. Lett. 1(4):98, 2014.CrossRef
21.
go back to reference Martis, R. J., Acharya, U. R., Mandana, K., Ray, A. K., and Chakraborty, C., Cardiac decision making using higher order spectra. Biomedical Signal Process. Control 8(2):193–203, 2013.CrossRef Martis, R. J., Acharya, U. R., Mandana, K., Ray, A. K., and Chakraborty, C., Cardiac decision making using higher order spectra. Biomedical Signal Process. Control 8(2):193–203, 2013.CrossRef
22.
go back to reference Huang, K., and Zhang, L., Cardiology knowledge free ecg feature extraction using generalized tensor rank one discriminant analysis. EURASIP J. Adv. Signal Process. 2014(1):1–15, 2014.CrossRef Huang, K., and Zhang, L., Cardiology knowledge free ecg feature extraction using generalized tensor rank one discriminant analysis. EURASIP J. Adv. Signal Process. 2014(1):1–15, 2014.CrossRef
23.
go back to reference Oppenheim, A. V., and Lim, J. S., The importance of phase in signals. Proc. IEEE 69(5):529–541, 1981.CrossRef Oppenheim, A. V., and Lim, J. S., The importance of phase in signals. Proc. IEEE 69(5):529–541, 1981.CrossRef
24.
go back to reference Thomas, M., Das, M. K., and Ari, S., Automatic ecg arrhythmia classification using dual tree complex wavelet based features. AEU-Int. J. Electron. Commun. 69(4):715–721, 2015.CrossRef Thomas, M., Das, M. K., and Ari, S., Automatic ecg arrhythmia classification using dual tree complex wavelet based features. AEU-Int. J. Electron. Commun. 69(4):715–721, 2015.CrossRef
25.
go back to reference Selesnick, I. W., Baraniuk, R. G., and Kingsbury, N. G., The dual-tree complex wavelet transform. IEEE Signal Proc. Mag. 22(6):123–151, 2005.CrossRef Selesnick, I. W., Baraniuk, R. G., and Kingsbury, N. G., The dual-tree complex wavelet transform. IEEE Signal Proc. Mag. 22(6):123–151, 2005.CrossRef
26.
go back to reference Rangayyan, R. M. Biomedical signal analysis. Vol. 33: Wiley, 2015. Rangayyan, R. M. Biomedical signal analysis. Vol. 33: Wiley, 2015.
27.
go back to reference Kingsbury, N., A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. In: Image Processing, 2000 International Conference on Proceedings, Vol. 2, pp. 375–378: IEEE, 2000. Kingsbury, N., A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. In: Image Processing, 2000 International Conference on Proceedings, Vol. 2, pp. 375–378: IEEE, 2000.
28.
go back to reference Takla, G., Loparo, K. A., and Nair, B.: System for artifact detection and elimination in an electrocardiogram signal recorded from a patient monitor. May 7 2008, uS Patent App. 12/116, 235 Takla, G., Loparo, K. A., and Nair, B.: System for artifact detection and elimination in an electrocardiogram signal recorded from a patient monitor. May 7 2008, uS Patent App. 12/116, 235
29.
go back to reference Selesnick, I. W., Hilbert transform pairs of wavelet bases. IEEE Signal Process. Lett. 8(6):170–173, 2001.CrossRef Selesnick, I. W., Hilbert transform pairs of wavelet bases. IEEE Signal Process. Lett. 8(6):170–173, 2001.CrossRef
30.
go back to reference Zhang, J., Jiang, W., Wang, R., and Wang, L., Brain mr image segmentation with spatial constrained k-mean algorithm and dual-tree complex wavelet transform. J. Med. Syst. 38(9):1–6 , 2014.CrossRef Zhang, J., Jiang, W., Wang, R., and Wang, L., Brain mr image segmentation with spatial constrained k-mean algorithm and dual-tree complex wavelet transform. J. Med. Syst. 38(9):1–6 , 2014.CrossRef
31.
go back to reference Tripathy, R., Sharma, L., and Dandapat, S., Detection of shockable ventricular arrhythmia using variational mode decomposition. J. Med. Syst. 40(4):1–13, 2016.CrossRef Tripathy, R., Sharma, L., and Dandapat, S., Detection of shockable ventricular arrhythmia using variational mode decomposition. J. Med. Syst. 40(4):1–13, 2016.CrossRef
32.
go back to reference Pohjalainen, J., Räsänen, O., and Kadioglu, S., Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput. Speech Lang. 29(1): 145–171, 2015.CrossRef Pohjalainen, J., Räsänen, O., and Kadioglu, S., Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput. Speech Lang. 29(1): 145–171, 2015.CrossRef
33.
go back to reference Bejani, M., Gharavian, D., and Charkari, N. M., Audiovisual emotion recognition using anova feature selection method and multi-classifier neural networks. Neural Comput. & Applic. 24(2):399–412, 2014.CrossRef Bejani, M., Gharavian, D., and Charkari, N. M., Audiovisual emotion recognition using anova feature selection method and multi-classifier neural networks. Neural Comput. & Applic. 24(2):399–412, 2014.CrossRef
34.
go back to reference Bishop, C. M., Pattern recognition. Mach. Learn., 2006. Bishop, C. M., Pattern recognition. Mach. Learn., 2006.
35.
go back to reference Keller, J. M., Gray, M. R., and Givens, J. A., A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 4:580–585, 1985.CrossRef Keller, J. M., Gray, M. R., and Givens, J. A., A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 4:580–585, 1985.CrossRef
36.
go back to reference Arif, M., Akram, M. U., et al., Pruned fuzzy k-nearest neighbor classifier for beat classification. J. Biomed. Sci. Eng. 3(04):380, 2010.CrossRef Arif, M., Akram, M. U., et al., Pruned fuzzy k-nearest neighbor classifier for beat classification. J. Biomed. Sci. Eng. 3(04):380, 2010.CrossRef
37.
go back to reference Sokolova, M., and Lapalme, G., A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4):427–437, 2009.CrossRef Sokolova, M., and Lapalme, G., A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4):427–437, 2009.CrossRef
39.
go back to reference Heiberger, R. M., and Neuwirth, E., One-way anova. In: R through excel, pp. 165–191: Springer 2009. Heiberger, R. M., and Neuwirth, E., One-way anova. In: R through excel, pp. 165–191: Springer 2009.
40.
go back to reference Tsutsumi, T., Okamoto, Y., Kubota-Takano, N., Wakatsuki, D., Suzuki, H., Sezaki, K., Iwasawa, K., and Nakajima, T., Time–frequency analysis of the qrs complex in patients with ischemic cardiomyopathy and myocardial infarction. IJC Heart Vessel. 4:177–187, 2014.CrossRef Tsutsumi, T., Okamoto, Y., Kubota-Takano, N., Wakatsuki, D., Suzuki, H., Sezaki, K., Iwasawa, K., and Nakajima, T., Time–frequency analysis of the qrs complex in patients with ischemic cardiomyopathy and myocardial infarction. IJC Heart Vessel. 4:177–187, 2014.CrossRef
41.
go back to reference Dandapat, S., Sharma, L., and Tripathy, R., Quantification of diagnostic information from electrocardiogram signal: A review. In: Advances in communication and computing, pp. 17–39: Springer (2015) Dandapat, S., Sharma, L., and Tripathy, R., Quantification of diagnostic information from electrocardiogram signal: A review. In: Advances in communication and computing, pp. 17–39: Springer (2015)
Metadata
Title
Detection of Cardiac Abnormalities from Multilead ECG using Multiscale Phase Alternation Features
Authors
R. K. Tripathy
S. Dandapat
Publication date
01-06-2016
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 6/2016
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-016-0505-6

Other articles of this Issue 6/2016

Journal of Medical Systems 6/2016 Go to the issue