Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Small-scale land-use variability affects Anopheles spp. distribution and concomitant Plasmodium infection in humans and mosquito vectors in southeastern Madagascar

Authors: Sarah Zohdy, Kristin Derfus, Emily G. Headrick, Mbolatiana Tovo Andrianjafy, Patricia C. Wright, Thomas R. Gillespie

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Deforestation and land-use change have the potential to alter human exposure to malaria. A large percentage of Madagascar’s original forest cover has been lost to slash-and-burn agriculture, and malaria is one of the top causes of mortality on the island. In this study, the influence of land-use on the distribution of Plasmodium vectors and concomitant Plasmodium infection in humans and mosquito vectors was examined in the southeastern rainforests of Madagascar.

Methods

From June to August 2013, health assessments were conducted on individuals living in sixty randomly selected households in six villages bordering Ranomafana National Park. Humans were screened for malaria using species-specific rapid diagnostic tests (RDTs), and surveyed about insecticide-treated bed net (ITN) usage. Concurrently, mosquitoes were captured in villages and associated forest and agricultural sites. All captured female Anopheline mosquitoes were screened for Plasmodium spp. using a circumsporozoite enzyme-linked immunosorbent assay (csELISA).

Results

Anopheles spp. dominated the mosquito communities of agricultural and village land-use sites, accounting for 41.4 and 31.4 % of mosquitoes captured respectively, whereas Anopheles spp. accounted for only 1.6 % of mosquitoes captured from forest sites. Interestingly, most Anopheles spp. (67.7 %) were captured in agricultural sites in close proximity to animal pens, and 90.8 % of Anopheles mosquitoes captured in agricultural sites were known vectors of malaria. Three Anopheline mosquitoes (0.7 %) were positive for malaria (Plasmodium vivax-210) and all positive mosquitoes were collected from agricultural or village land-use sites. Ten humans (3.7 %) tested were positive for P. falciparum, and 23.3 % of those surveyed reported never sleeping under ITNs.

Conclusions

This study presents the first report of malaria surveillance in humans and the environment in southeastern Madagascar. These findings suggest that even during the winter, malaria species are present in both humans and mosquitoes; with P. falciparum found in humans, and evidence of P. vivax-210 in mosquito vectors. The presence of P. vivax in resident vectors, but not humans may relate to the high incidence of humans lacking the Duffy protein. The majority of mosquito vectors were found in agricultural land-use sites, in particular near livestock pens. These findings have the potential to inform and improve targeted malaria control and prevention strategies in the region.
Appendix
Available only for authorised users
Literature
3.
go back to reference Nepomichene TN, Tata E, Boyer S. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani. Malar J. 2015;14:1.CrossRef Nepomichene TN, Tata E, Boyer S. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani. Malar J. 2015;14:1.CrossRef
4.
go back to reference Barnadas C, Tichit M, Bouchier C, Ratsimbasoa A, Randrianasolo L, Raherinjafy R, et al. Plasmodium vivax dhfr and dhps mutations in isolates from Madagascar and therapeutic response to sulphadoxine-pyrimethamine. Malar J. 2008;7:35.CrossRefPubMedPubMedCentral Barnadas C, Tichit M, Bouchier C, Ratsimbasoa A, Randrianasolo L, Raherinjafy R, et al. Plasmodium vivax dhfr and dhps mutations in isolates from Madagascar and therapeutic response to sulphadoxine-pyrimethamine. Malar J. 2008;7:35.CrossRefPubMedPubMedCentral
5.
go back to reference Mutero CM, Amerasinghe F, Boelee E, Konradsen F, Van der Hoek W, Nevondo T, et al. Systemwide initiative on malaria and agriculture: an innovative framework for research and capacity building. Eco Health J. 2005;2:11–6. Mutero CM, Amerasinghe F, Boelee E, Konradsen F, Van der Hoek W, Nevondo T, et al. Systemwide initiative on malaria and agriculture: an innovative framework for research and capacity building. Eco Health J. 2005;2:11–6.
6.
go back to reference Utzinger J, Tozan Y, Singer BH. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001;6:677–87.CrossRefPubMed Utzinger J, Tozan Y, Singer BH. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001;6:677–87.CrossRefPubMed
7.
go back to reference Sussman RW, Green GM, Sussman LK. Satellite imagery, human ecology, anthropology, and deforestation in Madagascar. J Hum Ecol. 1994;22:333–54.CrossRef Sussman RW, Green GM, Sussman LK. Satellite imagery, human ecology, anthropology, and deforestation in Madagascar. J Hum Ecol. 1994;22:333–54.CrossRef
8.
go back to reference Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000;30:1395–405.CrossRefPubMed Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000;30:1395–405.CrossRefPubMed
9.
go back to reference Pongsiri MJ, Roman J, Ezenwa VO, Goldberg TL, Koren HS, Newbold SC, et al. Biodiversity loss affects global disease ecology. Bioscience. 2009;59:945–54.CrossRef Pongsiri MJ, Roman J, Ezenwa VO, Goldberg TL, Koren HS, Newbold SC, et al. Biodiversity loss affects global disease ecology. Bioscience. 2009;59:945–54.CrossRef
10.
go back to reference Yasuoka J, Levins R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg. 2007;76:450–60.PubMed Yasuoka J, Levins R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg. 2007;76:450–60.PubMed
11.
go back to reference Vittor AY, Pan W, Gilman RH, Tielsch J, Glass G, Shields T, Wagner S. Linking deforestation to malaria in the amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg. 2009;81:5–12.PubMedPubMedCentral Vittor AY, Pan W, Gilman RH, Tielsch J, Glass G, Shields T, Wagner S. Linking deforestation to malaria in the amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg. 2009;81:5–12.PubMedPubMedCentral
12.
go back to reference Wright PC. The Future of Biodiversity in Madagascar: A View from Ranomafana National Park. In: Patterson BD, Goodman SM, editors. Natural Change and Human Impact in Madagascar. Washington DC: Smithsonian University Press; 1997. p. 381–405. Wright PC. The Future of Biodiversity in Madagascar: A View from Ranomafana National Park. In: Patterson BD, Goodman SM, editors. Natural Change and Human Impact in Madagascar. Washington DC: Smithsonian University Press; 1997. p. 381–405.
13.
go back to reference Brooks CP, Holmes C, Kramer K, Barnett B, Keitt TH. The role of demography and markets in determining deforestation rates near Ranomafana National Park. Madagascar PLoS One. 2009;4:e5783.CrossRefPubMed Brooks CP, Holmes C, Kramer K, Barnett B, Keitt TH. The role of demography and markets in determining deforestation rates near Ranomafana National Park. Madagascar PLoS One. 2009;4:e5783.CrossRefPubMed
14.
go back to reference Zohdy S, Derfus K, Andrianjafy MT, Wright PC, Gillespie TR. Field evaluation of synthetic lure (3-methyl-1-butanol) when compared to non odour-baited control in capturing Anopheles mosquitoes in varying land-use sites in Madagascar. Parasit Vectors. 2015;8:145.CrossRefPubMedPubMedCentral Zohdy S, Derfus K, Andrianjafy MT, Wright PC, Gillespie TR. Field evaluation of synthetic lure (3-methyl-1-butanol) when compared to non odour-baited control in capturing Anopheles mosquitoes in varying land-use sites in Madagascar. Parasit Vectors. 2015;8:145.CrossRefPubMedPubMedCentral
15.
go back to reference Mukabana WR, Mweresa CK, Otieno B, Omusula P, Smallegange RC, van Loon JJ, et al. A novel synthetic odourant blend for trapping of malaria and other African mosquito species. J Chem Ecol. 2012;38:235–44.CrossRefPubMedPubMedCentral Mukabana WR, Mweresa CK, Otieno B, Omusula P, Smallegange RC, van Loon JJ, et al. A novel synthetic odourant blend for trapping of malaria and other African mosquito species. J Chem Ecol. 2012;38:235–44.CrossRefPubMedPubMedCentral
16.
go back to reference Gillies MT, de Meillon B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publ S Afr Inst Med Res. 1968;54:1–343. Gillies MT, de Meillon B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publ S Afr Inst Med Res. 1968;54:1–343.
17.
go back to reference Gillies MT, Coetzee M. A Supplement to the Anophelinae of Africa South of the Sahara. Publ S Afr Inst Med Res. 1987;55:1–143. Gillies MT, Coetzee M. A Supplement to the Anophelinae of Africa South of the Sahara. Publ S Afr Inst Med Res. 1987;55:1–143.
18.
go back to reference Wirtz R, Avery M, Benedict M. Chapter 3: Specific anopheles techniques 3.3 Plasmodium falciparum sporozoite ELISA. Methods in Anopheles research (2nd edn). National Institutes of Health, NIAID MR4. 2011. Wirtz R, Avery M, Benedict M. Chapter 3: Specific anopheles techniques 3.3 Plasmodium falciparum sporozoite ELISA. Methods in Anopheles research (2nd edn). National Institutes of Health, NIAID MR4. 2011.
19.
go back to reference Burkot TR, Williams JL, Schneider I. Identification of Plasmodium falciparum-infected mosquitoes by a double antibody enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1984;33:783–8.PubMed Burkot TR, Williams JL, Schneider I. Identification of Plasmodium falciparum-infected mosquitoes by a double antibody enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1984;33:783–8.PubMed
20.
go back to reference Junglen S, Kurth A, Kuehl H, Quan PL, Ellerbrok H, Pauli G, et al. Examining landscape factors influencing relative distribution of mosquito genera and frequency of virus infection. EcoHealth. 2009;6:239–49.CrossRefPubMedPubMedCentral Junglen S, Kurth A, Kuehl H, Quan PL, Ellerbrok H, Pauli G, et al. Examining landscape factors influencing relative distribution of mosquito genera and frequency of virus infection. EcoHealth. 2009;6:239–49.CrossRefPubMedPubMedCentral
21.
go back to reference Fillinger U, Sonye G, Killeen GF, Knols BG, Becker N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health. 2004;9:1274–89.CrossRefPubMed Fillinger U, Sonye G, Killeen GF, Knols BG, Becker N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health. 2004;9:1274–89.CrossRefPubMed
22.
go back to reference Duchemin JB, Tsy JM, Rabarison P, Roux J, Coluzzi M, Costantini C. Zoophily of Anopheles arabiensis and An. gambiae in Madagascar demonstrated by odour-baited entry traps. Med Vet Entomol. 2001;15:50–7.CrossRefPubMed Duchemin JB, Tsy JM, Rabarison P, Roux J, Coluzzi M, Costantini C. Zoophily of Anopheles arabiensis and An. gambiae in Madagascar demonstrated by odour-baited entry traps. Med Vet Entomol. 2001;15:50–7.CrossRefPubMed
23.
go back to reference Fontenille D, Lepers JP, Campbell GH, Coluzzi M, Rakotoarivony I, Coulanges P. Malaria Malaria transmission and vector biology in Manarintsoa, high plateaux of Madagascar. Am J Trop Med Hyg. 1990;43:107–15.PubMed Fontenille D, Lepers JP, Campbell GH, Coluzzi M, Rakotoarivony I, Coulanges P. Malaria Malaria transmission and vector biology in Manarintsoa, high plateaux of Madagascar. Am J Trop Med Hyg. 1990;43:107–15.PubMed
24.
go back to reference Saul A. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J. 2003;2:32.CrossRefPubMedPubMedCentral Saul A. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J. 2003;2:32.CrossRefPubMedPubMedCentral
25.
go back to reference Bouma M, Rowland M. Failure of passive zooprophylaxis: cattle ownership in Pakistan is associated with a higher prevalence of malaria. Trans R Soc Trop Med Hyg. 1995;89(4):351–3.CrossRefPubMed Bouma M, Rowland M. Failure of passive zooprophylaxis: cattle ownership in Pakistan is associated with a higher prevalence of malaria. Trans R Soc Trop Med Hyg. 1995;89(4):351–3.CrossRefPubMed
26.
go back to reference Mendis K, Rietveld A, Warsam M, Bosman A, Greenwood B, Wernsdorfer WH. From malaria control to eradication: the WHO perspective. Trop Med Int Health. 2009;14:802–9.CrossRefPubMed Mendis K, Rietveld A, Warsam M, Bosman A, Greenwood B, Wernsdorfer WH. From malaria control to eradication: the WHO perspective. Trop Med Int Health. 2009;14:802–9.CrossRefPubMed
27.
go back to reference Menard D, Barnadas C, Bouchier C, Henry-Halldin C, Gray LR, Ratsimbasoa A, et al. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA. 2010;107:5967–71.CrossRefPubMedPubMedCentral Menard D, Barnadas C, Bouchier C, Henry-Halldin C, Gray LR, Ratsimbasoa A, et al. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA. 2010;107:5967–71.CrossRefPubMedPubMedCentral
28.
go back to reference Durnez L, Van Bortel W, Denis L, Roelants P, Veracx A, Trung HD, et al. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination. Malar J. 2011;10:195.CrossRefPubMedPubMedCentral Durnez L, Van Bortel W, Denis L, Roelants P, Veracx A, Trung HD, et al. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination. Malar J. 2011;10:195.CrossRefPubMedPubMedCentral
Metadata
Title
Small-scale land-use variability affects Anopheles spp. distribution and concomitant Plasmodium infection in humans and mosquito vectors in southeastern Madagascar
Authors
Sarah Zohdy
Kristin Derfus
Emily G. Headrick
Mbolatiana Tovo Andrianjafy
Patricia C. Wright
Thomas R. Gillespie
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1164-2

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.