Skip to main content
Top
Published in: Journal of Translational Medicine 2/2014

Open Access 01-12-2014 | Research

Simulation environment and graphical visualization environment: a COPD use-case

Authors: Mercedes Huertas-Migueláñez, Daniel Mora, Isaac Cano, Dieter Maier, David Gomez-Cabrero, Magí Lluch-Ariet, Felip Miralles

Published in: Journal of Translational Medicine | Special Issue 2/2014

Login to get access

Abstract

Background

Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue.

Results

In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules.
This simulation environment has been validated with the integration of three models: two deterministic, i.e. based on linear and differential equations, and one probabilistic, i.e., based on probability theory. These models have been selected based on the disease under study in this project, i.e., chronic obstructive pulmonary disease.

Conclusion

It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.
Literature
1.
go back to reference Gomez-Cabrero D, Menche J, Cano I, Abugessaisa I, Roca J, Selivano V, Cascante M, Barabasi B, Tegnér J: Systems medicine: modeling frameworks and their interactions in copd. 2014, Manuscript submitted for publication Gomez-Cabrero D, Menche J, Cano I, Abugessaisa I, Roca J, Selivano V, Cascante M, Barabasi B, Tegnér J: Systems medicine: modeling frameworks and their interactions in copd. 2014, Manuscript submitted for publication
2.
go back to reference Cecaroni L, Miralles F, Velickovski F: Synergy-copd: modelling and simulation for systems medicine. Virtual Physiological Human Network of Excellence. 2012, 7: 23-24. Cecaroni L, Miralles F, Velickovski F: Synergy-copd: modelling and simulation for systems medicine. Virtual Physiological Human Network of Excellence. 2012, 7: 23-24.
4.
go back to reference Gomez-Cabrero D: Synergy-copd: a multidisciplinary approach for understanding and managing a chronic non-communicable disease. 2014, Manuscript submitted for publication Gomez-Cabrero D: Synergy-copd: a multidisciplinary approach for understanding and managing a chronic non-communicable disease. 2014, Manuscript submitted for publication
5.
go back to reference Cano I, Tenyj A, Schueller C, Kalus W, Huertas M, Gomez-Cabrero D, Antczak P, Roca J, Cascante M, Falicani F, Maier D: The copd knowledge base: enabling data analysis and computational simulation in translational copd research. 2014, Manuscript submitted for publication Cano I, Tenyj A, Schueller C, Kalus W, Huertas M, Gomez-Cabrero D, Antczak P, Roca J, Cascante M, Falicani F, Maier D: The copd knowledge base: enabling data analysis and computational simulation in translational copd research. 2014, Manuscript submitted for publication
6.
go back to reference Wagner PD: Algebraic analysis of the determinants of v¡ sub¿ o2, max¡/sub¿. Respiration physiology. 1993, 93 (2): 221-237. 10.1016/0034-5687(93)90007-W.CrossRefPubMed Wagner PD: Algebraic analysis of the determinants of v¡ sub¿ o2, max¡/sub¿. Respiration physiology. 1993, 93 (2): 221-237. 10.1016/0034-5687(93)90007-W.CrossRefPubMed
7.
go back to reference Cano I, Mickael M, Gomez-Cabrero D, Tegnér J, Roca J, Wagner P: Importance of mitochondrial po2 in maximal o2 transport and utilization: A theoretical analysis. Respir Physiol Neurobiol. 2013, 189 (3): 477-483. 10.1016/j.resp.2013.08.020.CrossRefPubMed Cano I, Mickael M, Gomez-Cabrero D, Tegnér J, Roca J, Wagner P: Importance of mitochondrial po2 in maximal o2 transport and utilization: A theoretical analysis. Respir Physiol Neurobiol. 2013, 189 (3): 477-483. 10.1016/j.resp.2013.08.020.CrossRefPubMed
8.
go back to reference Selivanov VA, Votyakova TV, Pivtoraiko VN, Zeak J, Sukhomlin T, Trucco M, Roca J, Cascante M: Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. PLoS computational biology. 2011, 7 (3): 1001115-10.1371/journal.pcbi.1001115.CrossRef Selivanov VA, Votyakova TV, Pivtoraiko VN, Zeak J, Sukhomlin T, Trucco M, Roca J, Cascante M: Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. PLoS computational biology. 2011, 7 (3): 1001115-10.1371/journal.pcbi.1001115.CrossRef
11.
go back to reference Ayyadurai VS, Dewey CF: Cytosolve: A scalable computational method for dynamic integration of multiple molecular pathway models. Cellular and molecular bioengineering. 2011, 4 (1): 28-45. 10.1007/s12195-010-0143-x.PubMedCentralCrossRefPubMed Ayyadurai VS, Dewey CF: Cytosolve: A scalable computational method for dynamic integration of multiple molecular pathway models. Cellular and molecular bioengineering. 2011, 4 (1): 28-45. 10.1007/s12195-010-0143-x.PubMedCentralCrossRefPubMed
12.
go back to reference Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, Mirams GR, Murray P, Osborne JM, Walter A: Chaste: a test-driven approach to software development for biological modelling. Computer Physics Communications. 2009, 180 (12): 2452-2471. 10.1016/j.cpc.2009.07.019.CrossRef Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, Mirams GR, Murray P, Osborne JM, Walter A: Chaste: a test-driven approach to software development for biological modelling. Computer Physics Communications. 2009, 180 (12): 2452-2471. 10.1016/j.cpc.2009.07.019.CrossRef
13.
go back to reference Hester RL, Brown AJ, Husband L, Iliescu R, Pruett D, Summers R, Coleman TG: Hummod: a modeling environment for the simulation of integrative human physiology. Frontiers in physiology. 2011, 2: Hester RL, Brown AJ, Husband L, Iliescu R, Pruett D, Summers R, Coleman TG: Hummod: a modeling environment for the simulation of integrative human physiology. Frontiers in physiology. 2011, 2:
14.
go back to reference Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, Goerlitz L, Jaeger J, Loosen R, Ludewig B: A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Frontiers in Physiology. 2011, 2: Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, Goerlitz L, Jaeger J, Loosen R, Ludewig B: A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Frontiers in Physiology. 2011, 2:
15.
go back to reference Maier D, Kalus W, Wolff M, Kalko SG, Roca J, de Mas IM, Turan N, Cascante M, Falciani F, Hernandez M: Knowledge management for systems biology a general and visually driven framework applied to translational medicine. BMC systems biology. 2011, 5 (1): 38-10.1186/1752-0509-5-38.PubMedCentralCrossRefPubMed Maier D, Kalus W, Wolff M, Kalko SG, Roca J, de Mas IM, Turan N, Cascante M, Falciani F, Hernandez M: Knowledge management for systems biology a general and visually driven framework applied to translational medicine. BMC systems biology. 2011, 5 (1): 38-10.1186/1752-0509-5-38.PubMedCentralCrossRefPubMed
16.
go back to reference Leff A, Rayfield JT: Web-application development using the model/view/controller design pattern. Enterprise Distributed Object Computing Conference 2001 EDOC'01 ProceedingsFifth IEEE International. 2001, IEEE, 118-127. Leff A, Rayfield JT: Web-application development using the model/view/controller design pattern. Enterprise Distributed Object Computing Conference 2001 EDOC'01 ProceedingsFifth IEEE International. 2001, IEEE, 118-127.
18.
go back to reference Rayner T, Rocca-Serra P, Spellman P, Causton H, Farne A, Holloway E, Irizarry R, Liu J, Maier D, Miller M: A simple spreadsheet-based, miame-supportive format for microarray data: Mage-tab. Bmc Bioinformatics. 2006, 7 (1): 489-10.1186/1471-2105-7-489.PubMedCentralCrossRefPubMed Rayner T, Rocca-Serra P, Spellman P, Causton H, Farne A, Holloway E, Irizarry R, Liu J, Maier D, Miller M: A simple spreadsheet-based, miame-supportive format for microarray data: Mage-tab. Bmc Bioinformatics. 2006, 7 (1): 489-10.1186/1471-2105-7-489.PubMedCentralCrossRefPubMed
20.
go back to reference Wagner PD: Determinants of maximal oxygen transport and utilization. Annual review of physiology. 1996, 58 (1): 21-50. 10.1146/annurev.ph.58.030196.000321.CrossRefPubMed Wagner PD: Determinants of maximal oxygen transport and utilization. Annual review of physiology. 1996, 58 (1): 21-50. 10.1146/annurev.ph.58.030196.000321.CrossRefPubMed
21.
go back to reference Berkelhamer SK, Kim GA, Radder JE, Wedgwood S, Czech L, Steinhorn RH, Schumacker PT: Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radical Biology and Medicine. 2013 Berkelhamer SK, Kim GA, Radder JE, Wedgwood S, Czech L, Steinhorn RH, Schumacker PT: Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radical Biology and Medicine. 2013
22.
go back to reference Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL: Hyperoxia sensing: from molecular mechanisms to significance in disease. Journal of immunotoxicology. 2010, 7 (4): 239-254. 10.3109/1547691X.2010.492254.CrossRefPubMed Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL: Hyperoxia sensing: from molecular mechanisms to significance in disease. Journal of immunotoxicology. 2010, 7 (4): 239-254. 10.3109/1547691X.2010.492254.CrossRefPubMed
23.
go back to reference Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT: Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circulation research. 2010, 106 (3): 526-535. 10.1161/CIRCRESAHA.109.206334.PubMedCentralCrossRefPubMed Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT: Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circulation research. 2010, 106 (3): 526-535. 10.1161/CIRCRESAHA.109.206334.PubMedCentralCrossRefPubMed
24.
go back to reference Bailey DM, Young IS, McEneny J, Lawrenson L, Kim J, Barden J, Richardson RS: Regulation of free radical outflow from an isolated muscle bed in exercising humans. American Journal of Physiology-Heart and Circulatory Physiology. 2004, 287 (4): 1689-1699. 10.1152/ajpheart.00148.2004.CrossRef Bailey DM, Young IS, McEneny J, Lawrenson L, Kim J, Barden J, Richardson RS: Regulation of free radical outflow from an isolated muscle bed in exercising humans. American Journal of Physiology-Heart and Circulatory Physiology. 2004, 287 (4): 1689-1699. 10.1152/ajpheart.00148.2004.CrossRef
25.
go back to reference Koechlin C, Maltais F, Saey D, Michaud A, Leblanc P, Hayot M, Préfaut C: Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease. Thorax. 2005, 60 (10): 834-841. 10.1136/thx.2004.037531.PubMedCentralCrossRefPubMed Koechlin C, Maltais F, Saey D, Michaud A, Leblanc P, Hayot M, Préfaut C: Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease. Thorax. 2005, 60 (10): 834-841. 10.1136/thx.2004.037531.PubMedCentralCrossRefPubMed
26.
go back to reference Cherniack NS: Oxygen sensing: applications in humans. Journal of Applied Physiology. 2004, 96 (1): 352-358.CrossRefPubMed Cherniack NS: Oxygen sensing: applications in humans. Journal of Applied Physiology. 2004, 96 (1): 352-358.CrossRefPubMed
27.
go back to reference Selivanov VA, Votyakova TV, Zeak JA, Trucco M, Roca J, Cascante M: Bistability of mitochondrial respiration underlies paradoxical reactive oxygen species generation induced by anoxia. PLoS computational biology. 2009, 5 (12): 1000619-10.1371/journal.pcbi.1000619.CrossRef Selivanov VA, Votyakova TV, Zeak JA, Trucco M, Roca J, Cascante M: Bistability of mitochondrial respiration underlies paradoxical reactive oxygen species generation induced by anoxia. PLoS computational biology. 2009, 5 (12): 1000619-10.1371/journal.pcbi.1000619.CrossRef
28.
go back to reference Selivanov VA, Cascante M, Friedman M, Schumaker MF, Trucco M, Votyakova TV: Multistationary and oscillatory modes of free radicals generation by the mitochondrial respiratory chain revealed by a bifurcation analysis. PLoS computational biology. 2012, 8 (9): 1002700-10.1371/journal.pcbi.1002700.CrossRef Selivanov VA, Cascante M, Friedman M, Schumaker MF, Trucco M, Votyakova TV: Multistationary and oscillatory modes of free radicals generation by the mitochondrial respiratory chain revealed by a bifurcation analysis. PLoS computational biology. 2012, 8 (9): 1002700-10.1371/journal.pcbi.1002700.CrossRef
Metadata
Title
Simulation environment and graphical visualization environment: a COPD use-case
Authors
Mercedes Huertas-Migueláñez
Daniel Mora
Isaac Cano
Dieter Maier
David Gomez-Cabrero
Magí Lluch-Ariet
Felip Miralles
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue Special Issue 2/2014
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-12-S2-S7

Other articles of this Special Issue 2/2014

Journal of Translational Medicine 2/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.