Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2014

Open Access 01-12-2014 | Methodology

Simplified method to perform CLARITY imaging

Authors: Ekaterina Poguzhelskaya, Dmitry Artamonov, Anastasia Bolshakova, Olga Vlasova, Ilya Bezprozvanny

Published in: Molecular Neurodegeneration | Issue 1/2014

Login to get access

Abstract

Background

Imaging methods are used widely to understand structure of brain and other biological objects. However, sample penetration by light microscopy is limited due to light scattering by the tissue. A number of methods have been recently developed to solve this problem. In one approach (SeeDB) simple procedure for clarifying brain samples for imaging was described. However, this method is not compatible with immunostaining approach as SeeDB-prepared tissue is not permeable to the antibodies. Another technique for clearing brain tissue (CLARITY) was optimized for immunochemistry, but this method technically much more demanding than SeeDB.

Results

Here we report optimized protocol for imaging of brain samples (CLARITY2). We have simplified and shortened the original protocol. Following hydrogel fixation, we cut brain tissue to 1–1.5 mm thick coronal slices. This additional step enabled us to accelerate and simplify clearing, staining and imaging steps when compared to the original protocol. We validated the modified protocol in imaging experiments with brains from line M Thy1-GFP mouse and in immunostaining experiments with antibodies against postsynaptic protein PSD-95 and striatal-specific protein DARPP32.

Conclusions

The original CLARITY protocol was optimized and simplified. Application of the modified CLARITY2 protocol could be useful for a broad range of scientists working in neurobiology and developmental biology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Helmchen F, Denk W: Deep tissue two-photon microscopy. Nat Methods. 2005, 2: 932-940. 10.1038/nmeth818.CrossRefPubMed Helmchen F, Denk W: Deep tissue two-photon microscopy. Nat Methods. 2005, 2: 932-940. 10.1038/nmeth818.CrossRefPubMed
2.
go back to reference Ke MT, Fujimoto S, Imai T: SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 2013, 16: 1154-1161. 10.1038/nn.3447.CrossRefPubMed Ke MT, Fujimoto S, Imai T: SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 2013, 16: 1154-1161. 10.1038/nn.3447.CrossRefPubMed
3.
go back to reference Dodt HU, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, Deussing JM, Eder M, Zieglgänsberger W, Becker K: Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods. 2007, 4: 331-336. 10.1038/nmeth1036.CrossRefPubMed Dodt HU, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, Deussing JM, Eder M, Zieglgänsberger W, Becker K: Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods. 2007, 4: 331-336. 10.1038/nmeth1036.CrossRefPubMed
4.
go back to reference Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW: 2,2’-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech. 2007, 70: 1-9. 10.1002/jemt.20396.CrossRefPubMed Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW: 2,2’-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech. 2007, 70: 1-9. 10.1002/jemt.20396.CrossRefPubMed
5.
go back to reference Gonzalez-Bellido PT, Wardill TJ: Labeling and confocal imaging of neurons in thick invertebrate tissue samples. Cold Spring Harb Protoc. 2012, 2012: 969-983.CrossRefPubMed Gonzalez-Bellido PT, Wardill TJ: Labeling and confocal imaging of neurons in thick invertebrate tissue samples. Cold Spring Harb Protoc. 2012, 2012: 969-983.CrossRefPubMed
6.
go back to reference Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K: Structural and molecular interrogation of intact biological systems. Nature. 2013, 497: 332-337. 10.1038/nature12107.PubMedCentralCrossRefPubMed Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K: Structural and molecular interrogation of intact biological systems. Nature. 2013, 497: 332-337. 10.1038/nature12107.PubMedCentralCrossRefPubMed
7.
go back to reference Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000, 28: 41-51. 10.1016/S0896-6273(00)00084-2.CrossRefPubMed Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000, 28: 41-51. 10.1016/S0896-6273(00)00084-2.CrossRefPubMed
Metadata
Title
Simplified method to perform CLARITY imaging
Authors
Ekaterina Poguzhelskaya
Dmitry Artamonov
Anastasia Bolshakova
Olga Vlasova
Ilya Bezprozvanny
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2014
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-9-19

Other articles of this Issue 1/2014

Molecular Neurodegeneration 1/2014 Go to the issue