Skip to main content
Top
Published in: European Journal of Medical Research 1/2015

Open Access 01-12-2015 | Research

Signaling pathway STAT1 is strongly activated by IFN-β in the pathogenesis of osteoporosis

Authors: Claudine Seeliger, Lilianna Schyschka, Zienab Kronbach, Angela Wottge, Martijn van Griensven, Britt Wildemann, Helen Vester

Published in: European Journal of Medical Research | Issue 1/2015

Login to get access

Abstract

Background

Despite extensive research, the underlying pathological mechanisms of osteoporosis are not completely understood. Recent studies have indicated a distinct role for the IFN-β/STAT1 pathway in bone metabolism. An inhibitory effect of IFN-β on osteoclastogenesis has been detected and STAT1/2 has been shown to influence osteoblastic bone metabolism. So far, no data concerning the IFN-β/STAT1 pathways in osteoblasts and osteoclasts from osteoporotic and non-osteoporotic patients are available. The aim of the study was to analyze these pathways in both cell types.

Methods

Osteoblasts were isolated from the femoral heads of 12 osteoporotic and 11 non-osteoporotic patients and monocytes were differentiated into osteoclasts. After the differentiation period, cells were stimulated once with 20 and 100 ng/mL IFN-β for 4 days. Viability, activity, bone metabolism-related genes, and the proteins Fra1, SOCS1, STAT1, p-STAT1, and TRAF6 were analyzed.

Results

Viability, activity, and gene expressions were not affected by stimulating the osteoblasts. However, in osteoporotic osteoclasts, which display a significantly higher basal osteoclastic activity, the stimulation with IFN-β lead to significant inhibition. Further, an increased STAT1 activation was detected in both cell types with no significant differences between the groups. Regarding the phosphorylation of STAT1, no significant influence was detected in osteoblasts but the IFN-β stimulation led to a significant increase of p-STAT1 in osteoclasts of both groups.

Conclusions

IFN-β is a principal mediator in the pathogenesis of osteoporosis by inhibiting osteoclasts and inducing and activating STAT1. Our results also confirm this in cells from osteoporotic and non-osteoporotic patients. Strong inhibitory effects on the osteoclastogenesis of osteoporotic osteoclasts were detectable. Nevertheless, osteoblast activity was not negatively affected by IFN-β stimulation. These results may contribute to a better understanding of the underlying pathological signaling pathways of osteoporosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schapira D, Schapira C: Osteoporosis: the evolution of a scientific term. Osteoporos Int 1992, 2:164–167.PubMedCrossRef Schapira D, Schapira C: Osteoporosis: the evolution of a scientific term. Osteoporos Int 1992, 2:164–167.PubMedCrossRef
2.
3.
go back to reference American College of Obstetricians and Gynecologists Women’s Health Care Physicians: Osteoporosis. Obstet Gynecol 2004, 104(4 Suppl):66S–76S. American College of Obstetricians and Gynecologists Women’s Health Care Physicians: Osteoporosis. Obstet Gynecol 2004, 104(4 Suppl):66S–76S.
4.
go back to reference Most W, Schot L, Ederveen A, van der Wee-Pals L, Papapoulos S, Lowik C: In vitro and ex vivo evidence that estrogens suppress increased bone resorption induced by ovariectomy or PTH stimulation through an effect on osteoclastogenesis. Bone Miner Res 1995, 10:1523–1530.CrossRef Most W, Schot L, Ederveen A, van der Wee-Pals L, Papapoulos S, Lowik C: In vitro and ex vivo evidence that estrogens suppress increased bone resorption induced by ovariectomy or PTH stimulation through an effect on osteoclastogenesis. Bone Miner Res 1995, 10:1523–1530.CrossRef
6.
go back to reference Sato T, Watanabe K, Masuhara M, Hada N, Hakeda Y: Production of IL-7 is increased in ovariectomized mice, but not RANKL mRNA expression by osteoblasts/stromal cells in bone, and IL-7 enhances generation of osteoclast precursors in vitro . J Bone Miner Metab 2007, 25:19–27.PubMedCrossRef Sato T, Watanabe K, Masuhara M, Hada N, Hakeda Y: Production of IL-7 is increased in ovariectomized mice, but not RANKL mRNA expression by osteoblasts/stromal cells in bone, and IL-7 enhances generation of osteoclast precursors in vitro . J Bone Miner Metab 2007, 25:19–27.PubMedCrossRef
8.
go back to reference Faienza MF, Ventura A, Marzano F, Cavallo L: Postmenopausal osteoporosis: the role of immune system cells. Clin Dev Immunol 2013, 2013:1–6.CrossRef Faienza MF, Ventura A, Marzano F, Cavallo L: Postmenopausal osteoporosis: the role of immune system cells. Clin Dev Immunol 2013, 2013:1–6.CrossRef
9.
go back to reference Ha H, Lee JH, Kim HN, Kwak HB, Kim HM, Lee SE, Rhee JH, Kim HH, Lee ZH: Stimulation by TLR5 modulates osteoclast differentiation through STAT1/IFN-beta. J Immunol 2008, 180:1382–1389.PubMedCrossRef Ha H, Lee JH, Kim HN, Kwak HB, Kim HM, Lee SE, Rhee JH, Kim HH, Lee ZH: Stimulation by TLR5 modulates osteoclast differentiation through STAT1/IFN-beta. J Immunol 2008, 180:1382–1389.PubMedCrossRef
10.
go back to reference Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, Yokochi T, Oda H, Nakamura K, Ida N, Wagner EF, Taniguchi T: RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 2002, 416:744–749.PubMedCrossRef Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, Yokochi T, Oda H, Nakamura K, Ida N, Wagner EF, Taniguchi T: RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 2002, 416:744–749.PubMedCrossRef
11.
go back to reference Sun GJ, Guo T, Chen Y, Xu B, Guo JH, Zhao JN: Significant pathways detection in osteoporosis based on the bibliometric network. Eur Rev Med Pharmacol Sci 2013, 17:1–7.PubMed Sun GJ, Guo T, Chen Y, Xu B, Guo JH, Zhao JN: Significant pathways detection in osteoporosis based on the bibliometric network. Eur Rev Med Pharmacol Sci 2013, 17:1–7.PubMed
12.
go back to reference Orlic I, Borovecki F, Simic P, Vukicevic S: Gene expression profiling in bone tissue of osteoporotic mice. Arh Hig Rada Toksikol 2007, 58:3–11.PubMedCrossRef Orlic I, Borovecki F, Simic P, Vukicevic S: Gene expression profiling in bone tissue of osteoporotic mice. Arh Hig Rada Toksikol 2007, 58:3–11.PubMedCrossRef
13.
go back to reference Chen XD, Xiao P, Lei SF, Liu YZ, Guo YF, Deng FY, Tan LJ, Zhu XZ, Chen FR, Recker RR, Deng HW: Gene expression profiling in monocytes and SNP association suggest the importance of the STAT1 gene for osteoporosis in both Chinese and Caucasians. J Bone Miner Res 2010, 25:339–355.PubMedCentralPubMedCrossRef Chen XD, Xiao P, Lei SF, Liu YZ, Guo YF, Deng FY, Tan LJ, Zhu XZ, Chen FR, Recker RR, Deng HW: Gene expression profiling in monocytes and SNP association suggest the importance of the STAT1 gene for osteoporosis in both Chinese and Caucasians. J Bone Miner Res 2010, 25:339–355.PubMedCentralPubMedCrossRef
14.
go back to reference Kim S, Koga T, Isobe M, Kern BE, Yokochi T, Chin YE, Karsenty G, Taniguchi T, Takayanagi H: Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev 2003, 17:1979–1991.PubMedCentralPubMedCrossRef Kim S, Koga T, Isobe M, Kern BE, Yokochi T, Chin YE, Karsenty G, Taniguchi T, Takayanagi H: Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev 2003, 17:1979–1991.PubMedCentralPubMedCrossRef
16.
go back to reference El-Amin SF, Botchwey E, Tuli R, Kofron MD, Mesfin A, Sethuraman S, Tuan RS, Laurencin CT: Human osteoblast cells: isolation, characterization, and growth on polymers for musculoskeletal tissue engineering. J Biomed Mater Res A 2006, 76:439–449.PubMedCrossRef El-Amin SF, Botchwey E, Tuli R, Kofron MD, Mesfin A, Sethuraman S, Tuan RS, Laurencin CT: Human osteoblast cells: isolation, characterization, and growth on polymers for musculoskeletal tissue engineering. J Biomed Mater Res A 2006, 76:439–449.PubMedCrossRef
17.
18.
go back to reference Herrmann M, Schmidt J, Umanskaya N, Colaianni G, Al Marrawi F, Widmann T, Zallone A, Wildemann B, Herrmann W: Stimulation of osteoclast activity by low B-vitamin concentrations. Bone 2007, 41:584–591.PubMedCrossRef Herrmann M, Schmidt J, Umanskaya N, Colaianni G, Al Marrawi F, Widmann T, Zallone A, Wildemann B, Herrmann W: Stimulation of osteoclast activity by low B-vitamin concentrations. Bone 2007, 41:584–591.PubMedCrossRef
19.
go back to reference Ehnert S, Nussler AK, Lehmann A, Dooley S: Blood monocyte-derived neohepatocytes as in vitro test system for drug metabolism. Drug Metab Dispos 2008, 36:1922–1929.PubMedCrossRef Ehnert S, Nussler AK, Lehmann A, Dooley S: Blood monocyte-derived neohepatocytes as in vitro test system for drug metabolism. Drug Metab Dispos 2008, 36:1922–1929.PubMedCrossRef
20.
go back to reference Ralston SH, Helfrich MH: Bone Research Protocols. US: Humana Press Inc; 2010. Ralston SH, Helfrich MH: Bone Research Protocols. US: Humana Press Inc; 2010.
21.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265–275.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265–275.PubMed
22.
go back to reference Dhib-Jalbut S: Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 2002, 58:S3–S9.PubMedCrossRef Dhib-Jalbut S: Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 2002, 58:S3–S9.PubMedCrossRef
23.
go back to reference Kasper LH, Shoemaker J: Multiple sclerosis immunology: the healthy immune system vs the MS immune system. Neurology 2010, 74(Suppl 1):S2–S8.PubMedCrossRef Kasper LH, Shoemaker J: Multiple sclerosis immunology: the healthy immune system vs the MS immune system. Neurology 2010, 74(Suppl 1):S2–S8.PubMedCrossRef
24.
go back to reference Coclet-Ninin J, Dayer JM, Burger D: Interferon-beta not only inhibits interleukin-1beta and tumor necrosis factor-alpha but stimulates interleukin-1 receptor antagonist production in human peripheral blood mononuclear cells. Eur Cytokine Netw 1997, 8:345–349.PubMed Coclet-Ninin J, Dayer JM, Burger D: Interferon-beta not only inhibits interleukin-1beta and tumor necrosis factor-alpha but stimulates interleukin-1 receptor antagonist production in human peripheral blood mononuclear cells. Eur Cytokine Netw 1997, 8:345–349.PubMed
25.
go back to reference Rep MH, Schrijver HM, van Lopik T, Hintzen RQ, Roos MT, Ader HJ, Polman CH, van Lier RA: Interferon (IFN)-beta treatment enhances CD95 and interleukin 10 expression but reduces interferon-gamma producing T cells in MS patients. J Neuroimmunol 1999, 96:92–100.PubMedCrossRef Rep MH, Schrijver HM, van Lopik T, Hintzen RQ, Roos MT, Ader HJ, Polman CH, van Lier RA: Interferon (IFN)-beta treatment enhances CD95 and interleukin 10 expression but reduces interferon-gamma producing T cells in MS patients. J Neuroimmunol 1999, 96:92–100.PubMedCrossRef
26.
go back to reference Rep MH, Hintzen RQ, Polman CH, van Lier RA: Recombinant interferon-beta blocks proliferation but enhances interleukin-10 secretion by activated human T-cells. J Neuroimmunol 1996, 67:111–118.PubMedCrossRef Rep MH, Hintzen RQ, Polman CH, van Lier RA: Recombinant interferon-beta blocks proliferation but enhances interleukin-10 secretion by activated human T-cells. J Neuroimmunol 1996, 67:111–118.PubMedCrossRef
27.
go back to reference Chofflon M: Recombinant human interferon beta in relapsing-remitting multiple sclerosis: a review of the major clinical trials. Eur J Neurol 2000, 7:369–380.PubMedCrossRef Chofflon M: Recombinant human interferon beta in relapsing-remitting multiple sclerosis: a review of the major clinical trials. Eur J Neurol 2000, 7:369–380.PubMedCrossRef
28.
go back to reference Abraham AK, Ramanathan M, Weinstock-Guttman B, Mager DE: Mechanisms of interferon-beta effects on bone homeostasis. Biochem Pharmacol 2009, 77:1757–1762.PubMedCrossRef Abraham AK, Ramanathan M, Weinstock-Guttman B, Mager DE: Mechanisms of interferon-beta effects on bone homeostasis. Biochem Pharmacol 2009, 77:1757–1762.PubMedCrossRef
29.
go back to reference Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, Koshihara Y, Oda H, Nakamura K, Tanaka S: Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 2000, 43:259–269.PubMedCrossRef Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, Koshihara Y, Oda H, Nakamura K, Tanaka S: Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 2000, 43:259–269.PubMedCrossRef
30.
go back to reference Takayanagi H, Kim S, Koga T, Taniguchi T: Stat1-mediated cytoplasmic attenuation in osteoimmunology. J Cell Biochem 2005, 94:232–240.PubMedCrossRef Takayanagi H, Kim S, Koga T, Taniguchi T: Stat1-mediated cytoplasmic attenuation in osteoimmunology. J Cell Biochem 2005, 94:232–240.PubMedCrossRef
31.
go back to reference Varoglu AO, Varoglu E, Bayraktar R, Aygul R, Ulvi H, Yildirim K: The effect of interferon beta 1B on bone mineral density in multiple sclerosis patients. J Back Musculoskelet Rehabil 2010, 23:25–29.PubMed Varoglu AO, Varoglu E, Bayraktar R, Aygul R, Ulvi H, Yildirim K: The effect of interferon beta 1B on bone mineral density in multiple sclerosis patients. J Back Musculoskelet Rehabil 2010, 23:25–29.PubMed
32.
go back to reference Shuhaibar M, McKenna MJ, Au-Yeong M, Redmond JM: Favorable effect of immunomodulator therapy on bone mineral density in multiple sclerosis. Ir J Med Sci 2009, 178:43–45.PubMedCrossRef Shuhaibar M, McKenna MJ, Au-Yeong M, Redmond JM: Favorable effect of immunomodulator therapy on bone mineral density in multiple sclerosis. Ir J Med Sci 2009, 178:43–45.PubMedCrossRef
Metadata
Title
Signaling pathway STAT1 is strongly activated by IFN-β in the pathogenesis of osteoporosis
Authors
Claudine Seeliger
Lilianna Schyschka
Zienab Kronbach
Angela Wottge
Martijn van Griensven
Britt Wildemann
Helen Vester
Publication date
01-12-2015
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2015
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-014-0074-4

Other articles of this Issue 1/2015

European Journal of Medical Research 1/2015 Go to the issue