Skip to main content
Top
Published in: European Journal of Medical Research 1/2015

Open Access 01-12-2015 | Research

Effects of synthetic colloid and crystalloid solutions on hemorheology in vitro and in hemorrhagic shock

Authors: Gan Chen, Jingxiang Zhao, Penglong Li, Xuemei Kan, Guoxing You, Ying Wang, Yujing Yin, Xin Luo, Yuhua Zhang, Lian Zhao, Hong Zhou

Published in: European Journal of Medical Research | Issue 1/2015

Login to get access

Abstract

Background

Plasma expanders are commonly used in the management of critically ill patients, which may exhibit altered hemorheology. We evaluated the effects of various synthetic colloids and Lactated Ringer’s (LR) solution on hemorheological parameters in vitro and in a rodent hemorrhagic shock model.

Methods

For the in vitro experiments, rat blood was incubated with hydroxyethyl starch (HES) 130/0.4, HES 200/0.5, succinylated gelatine (GEL), or LR at various ratios. The control consisted of blood without dilution. The hemorheological parameters were measured after a 15-min incubation. For the in vivo study, rats were subjected to a severe volume-controlled hemorrhage and were resuscitated using a colloid solution (HES 130/0.4, HES 200/0.5, or GEL) or LR. The hemorheological parameters were measured 2 h after resuscitation.

Results

The GEL significantly elevated the plasma viscosity compared to the other groups. In the in vitro study, GEL and LR accelerated the erythrocyte aggregation. There was no significant difference between HES 130/0.4, HES 200/0.5, and control groups regarding the aggregation amplitude and index. In the in vivo study, the aggregation amplitude increased significantly in the GEL group compared to the HES 130/0.4, HES 200/0.5, LR, and sham groups. There was no significant difference between the groups with respect to the elongation index in vivo.

Conclusions

Hydroxyethyl starch did not change the erythrocyte aggregation compared to the control. GEL significantly accelerates the erythrocyte aggregation and elevates the plasma viscosity compared to hydroxyethyl starch. The in vitro hemorheological measurements most likely provide hints for the in vivo study.
Literature
1.
go back to reference Bagshaw SM, Bellomo R. The influence of volume management on outcome. Curr Opin Crit Care. 2007;13:541–8.CrossRefPubMed Bagshaw SM, Bellomo R. The influence of volume management on outcome. Curr Opin Crit Care. 2007;13:541–8.CrossRefPubMed
2.
go back to reference Standl T, Burmeister MA, Schroeder F, Currlin E, Schulte am Esch J, Freitag M, et al. hydroxyethyl starch (HES) 130/0.4 provides larger and faster increases in tissue oxygen tension in comparison with prehemodilution values than HES 70/0.5 or HES 200/0.5 in volunteers undergoing acute normovolemic hemodilution. Anesth Analg. 2003;96:936–43.CrossRefPubMed Standl T, Burmeister MA, Schroeder F, Currlin E, Schulte am Esch J, Freitag M, et al. hydroxyethyl starch (HES) 130/0.4 provides larger and faster increases in tissue oxygen tension in comparison with prehemodilution values than HES 70/0.5 or HES 200/0.5 in volunteers undergoing acute normovolemic hemodilution. Anesth Analg. 2003;96:936–43.CrossRefPubMed
3.
go back to reference Neff TA, Fischler L, Mark M, Stocker R, Reinhart WH. The influence of two different hydroxyethyl starch solutions (6% HES 130/0.4 and 200/0.5) on blood viscosity. Anesth Analg. 2005;100:1773–80.CrossRefPubMed Neff TA, Fischler L, Mark M, Stocker R, Reinhart WH. The influence of two different hydroxyethyl starch solutions (6% HES 130/0.4 and 200/0.5) on blood viscosity. Anesth Analg. 2005;100:1773–80.CrossRefPubMed
4.
go back to reference Audibert G, Dormer M, Lefèvre JC, Stoltz JF, Laxenaire MC. Rheologic effects of plasma substitutes used for preoperative hemodilution. Anesth Analg. 1994;78:740–5.CrossRefPubMed Audibert G, Dormer M, Lefèvre JC, Stoltz JF, Laxenaire MC. Rheologic effects of plasma substitutes used for preoperative hemodilution. Anesth Analg. 1994;78:740–5.CrossRefPubMed
5.
go back to reference Freyburger G, Dubreuil M, Boisseau MR, Janvier G. Rheological properties of commonly used plasma substitutes during preoperative normovolaemic acute haemodilution. Br J Anaesth. 1996;76:519–25.CrossRefPubMed Freyburger G, Dubreuil M, Boisseau MR, Janvier G. Rheological properties of commonly used plasma substitutes during preoperative normovolaemic acute haemodilution. Br J Anaesth. 1996;76:519–25.CrossRefPubMed
6.
go back to reference Castro VJ, Astiz ME, Rackow EC. Effect of crystalloid and colloid solutions on blood rheology in sepsis. Shock. 1997;8:104–7.CrossRefPubMed Castro VJ, Astiz ME, Rackow EC. Effect of crystalloid and colloid solutions on blood rheology in sepsis. Shock. 1997;8:104–7.CrossRefPubMed
7.
go back to reference Zhao L, Wang B, You GX, Wang ZL, Zhou H. Effects of different resuscitation fluids on the rheologic behavior of red blood cells, blood viscosity and plasma viscosity in experimental hemorrhagic shock. Resuscitation. 2009;80:253–8.CrossRefPubMed Zhao L, Wang B, You GX, Wang ZL, Zhou H. Effects of different resuscitation fluids on the rheologic behavior of red blood cells, blood viscosity and plasma viscosity in experimental hemorrhagic shock. Resuscitation. 2009;80:253–8.CrossRefPubMed
8.
go back to reference Pribush A, Zilberman-Kravits D, Meyerstein N. The mechanism of the dextran-induced red blood cell aggregation. Eur Biophys J. 2007;36:85–94.CrossRefPubMed Pribush A, Zilberman-Kravits D, Meyerstein N. The mechanism of the dextran-induced red blood cell aggregation. Eur Biophys J. 2007;36:85–94.CrossRefPubMed
9.
go back to reference Kroemer H, Haass A, Muller K, Jager H, Wagner EM, Heimburg P, et al. Haemodilution therapy in ischaemic stroke: plasma concentrations and plasma viscosity during long-term infusion of dextran 40 or hydroxyethyl starch 200/0.5. Eur J Clin Pharmacol. 1987;31:705–10.CrossRefPubMed Kroemer H, Haass A, Muller K, Jager H, Wagner EM, Heimburg P, et al. Haemodilution therapy in ischaemic stroke: plasma concentrations and plasma viscosity during long-term infusion of dextran 40 or hydroxyethyl starch 200/0.5. Eur J Clin Pharmacol. 1987;31:705–10.CrossRefPubMed
10.
go back to reference Sümpelmann R, Günther A, Zander R. Haemoconcentration by gelatin-induced acceleration of erythrocyte sedimentation rate. Anaesthesia. 2000;55:217–20.CrossRefPubMed Sümpelmann R, Günther A, Zander R. Haemoconcentration by gelatin-induced acceleration of erythrocyte sedimentation rate. Anaesthesia. 2000;55:217–20.CrossRefPubMed
11.
go back to reference Vicaut E. Opposite effects of red blood cell aggregation on resistance to blood flow. J Cardiovasc Surg (Torino). 1995;36:361–8.PubMed Vicaut E. Opposite effects of red blood cell aggregation on resistance to blood flow. J Cardiovasc Surg (Torino). 1995;36:361–8.PubMed
12.
go back to reference Yedgar S, Koshkaryev A, Barshtein G. The red blood cell in vascular occlusion. Pathophysiol Haemost and Thromb. 2002;32:263–8.CrossRef Yedgar S, Koshkaryev A, Barshtein G. The red blood cell in vascular occlusion. Pathophysiol Haemost and Thromb. 2002;32:263–8.CrossRef
13.
go back to reference Morariu AM, Vd Plaats A, V Oeveren W, ‘T Hart NA, Leuvenink HG, Graaff R, et al. Hyperaggregating effect of hydroxyethyl starch components and University of Wisconsin solution on human red blood cells: a risk of impaired graft perfusion in organ procurement? Transplantation. 2003;76:37–43.CrossRefPubMed Morariu AM, Vd Plaats A, V Oeveren W, ‘T Hart NA, Leuvenink HG, Graaff R, et al. Hyperaggregating effect of hydroxyethyl starch components and University of Wisconsin solution on human red blood cells: a risk of impaired graft perfusion in organ procurement? Transplantation. 2003;76:37–43.CrossRefPubMed
14.
go back to reference Henkelman S, Rakhorst G, van der Mei HC, Busscher HJ. Use of hydroxyethyl starch for inducing red blood cell aggregation. Clin Hemorheol Microcirc. 2012;52:27–35.PubMed Henkelman S, Rakhorst G, van der Mei HC, Busscher HJ. Use of hydroxyethyl starch for inducing red blood cell aggregation. Clin Hemorheol Microcirc. 2012;52:27–35.PubMed
15.
go back to reference Ehrly AM, Seebens H, Saeger-Lorenz K. [Effect of a 10% and 6% hydroxyethyl starch solution (molecular weight 200,000/0.62) in comparison with a 10% dextran solution (molecular weight 40,000) on flow properties of blood and tissue oxygen pressure in patients with intermittent claudication]. Infusionstherapie. 1988;15:181–7.PubMed Ehrly AM, Seebens H, Saeger-Lorenz K. [Effect of a 10% and 6% hydroxyethyl starch solution (molecular weight 200,000/0.62) in comparison with a 10% dextran solution (molecular weight 40,000) on flow properties of blood and tissue oxygen pressure in patients with intermittent claudication]. Infusionstherapie. 1988;15:181–7.PubMed
16.
go back to reference Menu P, Bleeker W, Longrois D, Caron A, Faivre-Fiorina B, Muller S, et al. In vivo effects of Hb solutions on blood viscosity and rheologic behavior of RBCs: comparison with clinically used volume expanders. Transfusion. 2000;40:1095–103.CrossRefPubMed Menu P, Bleeker W, Longrois D, Caron A, Faivre-Fiorina B, Muller S, et al. In vivo effects of Hb solutions on blood viscosity and rheologic behavior of RBCs: comparison with clinically used volume expanders. Transfusion. 2000;40:1095–103.CrossRefPubMed
17.
go back to reference Jungheinrich C, Sauermann W, Bepperling F, Vogt NH. Volume efficacy and reduced influence on measures of coagulation using hydroxyethyl starch 130/0.4 (6%) with an optimised in vivo molecular weight in orthopaedic surgery : a randomised, double-blind study. Drugs R D. 2004;5:1–9.CrossRefPubMed Jungheinrich C, Sauermann W, Bepperling F, Vogt NH. Volume efficacy and reduced influence on measures of coagulation using hydroxyethyl starch 130/0.4 (6%) with an optimised in vivo molecular weight in orthopaedic surgery : a randomised, double-blind study. Drugs R D. 2004;5:1–9.CrossRefPubMed
18.
go back to reference Treib J, Haass A, Pindur G, Treib W, Wenzel E, Schimrigk K. Influence of intravascular molecular weight of hydroxyethyl starch on platelets. Eur J Haematol. 1996;56:168–72.CrossRefPubMed Treib J, Haass A, Pindur G, Treib W, Wenzel E, Schimrigk K. Influence of intravascular molecular weight of hydroxyethyl starch on platelets. Eur J Haematol. 1996;56:168–72.CrossRefPubMed
19.
go back to reference Baskurt OK, Boynard M, Cokelet GC, Connes P, Cooke BM, Forconi S, et al. New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc. 2009;42:75–97.PubMed Baskurt OK, Boynard M, Cokelet GC, Connes P, Cooke BM, Forconi S, et al. New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc. 2009;42:75–97.PubMed
20.
go back to reference Chen G, You G, Wang Y, Lu M, Cheng W, Yang J, et al. Effects of synthetic colloids on oxidative stress and inflammatory response in hemorrhagic shock: comparison of hydroxyethyl starch 130/0.4, hydroxyethyl starch 200/0.5, and succinylated gelatin. Crit Care. 2013;17:R141.CrossRefPubMedCentralPubMed Chen G, You G, Wang Y, Lu M, Cheng W, Yang J, et al. Effects of synthetic colloids on oxidative stress and inflammatory response in hemorrhagic shock: comparison of hydroxyethyl starch 130/0.4, hydroxyethyl starch 200/0.5, and succinylated gelatin. Crit Care. 2013;17:R141.CrossRefPubMedCentralPubMed
21.
go back to reference Hardeman MR, Dobbe JGG, Ince C. The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer. Clin Hemorheol Microcirc. 2001;25:1–11.PubMed Hardeman MR, Dobbe JGG, Ince C. The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer. Clin Hemorheol Microcirc. 2001;25:1–11.PubMed
22.
go back to reference Chen G, Zhao L, Liu Y, Liao F, Han D, Zhou H. Regulation of blood viscosity in disease prevention and treatment. Chin Sci Bull. 2012;57:1946–52.CrossRef Chen G, Zhao L, Liu Y, Liao F, Han D, Zhou H. Regulation of blood viscosity in disease prevention and treatment. Chin Sci Bull. 2012;57:1946–52.CrossRef
23.
go back to reference Nolte D, Botzlar A, Pickelmann S, Bouskela E, Messmer K. Effects of diaspirin-cross-linked hemoglobin (DCLHb) on the microcirculation of striated skin muscle in the hamster: a study on safety and toxicity. J Lab Clin Med. 1997;130:314–27.CrossRefPubMed Nolte D, Botzlar A, Pickelmann S, Bouskela E, Messmer K. Effects of diaspirin-cross-linked hemoglobin (DCLHb) on the microcirculation of striated skin muscle in the hamster: a study on safety and toxicity. J Lab Clin Med. 1997;130:314–27.CrossRefPubMed
24.
go back to reference Kim S, Popel AS, Intaglietta M, Johnson PC. Effect of erythrocyte aggregation at normal human levels on functional capillary density in rat spinotrapezius muscle. Am J Physiol Heart Circ Physiol. 2006;290:H941–7.CrossRefPubMed Kim S, Popel AS, Intaglietta M, Johnson PC. Effect of erythrocyte aggregation at normal human levels on functional capillary density in rat spinotrapezius muscle. Am J Physiol Heart Circ Physiol. 2006;290:H941–7.CrossRefPubMed
25.
go back to reference Forconi S, Gori T. Endothelium and hemorheology. Clin Hemorheol Microcirc. 2013;53:3–10.PubMed Forconi S, Gori T. Endothelium and hemorheology. Clin Hemorheol Microcirc. 2013;53:3–10.PubMed
26.
go back to reference Baskurt OK, Yalcin O, Ozdem S, Armstrong JK, Meiselman HJ. Modulation of endothelial nitric oxide synthase expression by red blood cell aggregation. Am J Physiol Heart Circ Physiol. 2004;286:H222–9.CrossRefPubMed Baskurt OK, Yalcin O, Ozdem S, Armstrong JK, Meiselman HJ. Modulation of endothelial nitric oxide synthase expression by red blood cell aggregation. Am J Physiol Heart Circ Physiol. 2004;286:H222–9.CrossRefPubMed
27.
go back to reference Tateishi N, Suzuki Y, Cicha I, Maeda N. O2 release from erythrocytes flowing in a narrow O2-permeable tube: effects of erythrocyte aggregation. Am J Physiol Heart Circ Physiol. 2001;281:H448–56.PubMed Tateishi N, Suzuki Y, Cicha I, Maeda N. O2 release from erythrocytes flowing in a narrow O2-permeable tube: effects of erythrocyte aggregation. Am J Physiol Heart Circ Physiol. 2001;281:H448–56.PubMed
28.
go back to reference Tateishi N, Suzuki Y, Shirai M, Cicha I, Maeda N. Reduced oxygen release from erythrocytes by the acceleration-induced flow shift, observed in an oxygen-permeable narrow tube. J Biomech. 2002;35:1241–51.CrossRefPubMed Tateishi N, Suzuki Y, Shirai M, Cicha I, Maeda N. Reduced oxygen release from erythrocytes by the acceleration-induced flow shift, observed in an oxygen-permeable narrow tube. J Biomech. 2002;35:1241–51.CrossRefPubMed
29.
go back to reference Cabrales P, Tsai AG, Intaglietta M. Increased plasma viscosity prolongs microhemodynamic conditions during small volume resuscitation from hemorrhagic shock. Resuscitation. 2008;77:379–86.CrossRefPubMedCentralPubMed Cabrales P, Tsai AG, Intaglietta M. Increased plasma viscosity prolongs microhemodynamic conditions during small volume resuscitation from hemorrhagic shock. Resuscitation. 2008;77:379–86.CrossRefPubMedCentralPubMed
30.
go back to reference Ergun-Cagli K, Ileri-Gurel E, Ozeke O, Seringec N, Yalcinkaya A, Kocabeyoglu S, et al. Blood viscosity changes in slow coronary flow patients. Clin Hemorheol Microcirc. 2011;47:27–35.PubMed Ergun-Cagli K, Ileri-Gurel E, Ozeke O, Seringec N, Yalcinkaya A, Kocabeyoglu S, et al. Blood viscosity changes in slow coronary flow patients. Clin Hemorheol Microcirc. 2011;47:27–35.PubMed
31.
go back to reference Hazer DB, Berker M, Narin F, Ileri-Gurel E, Basak AT, Seringec N, et al. Effects of pravastatin on cellular ultrastructure and hemorheology in rats after traumatic head injury. Clin Hemorheol Microcirc. 2010;46:1–11.PubMed Hazer DB, Berker M, Narin F, Ileri-Gurel E, Basak AT, Seringec N, et al. Effects of pravastatin on cellular ultrastructure and hemorheology in rats after traumatic head injury. Clin Hemorheol Microcirc. 2010;46:1–11.PubMed
33.
go back to reference Li X, Xia W. Effects of concentration, degree of deacetylation and molecular weight on emulsifying properties of chitosan. Int J Biol Macromol. 2011;48:768–72.CrossRefPubMed Li X, Xia W. Effects of concentration, degree of deacetylation and molecular weight on emulsifying properties of chitosan. Int J Biol Macromol. 2011;48:768–72.CrossRefPubMed
34.
go back to reference Balian G, Click EM, Crouch E, Davidson JM, Bornstein P. Isolation of a collagen-binding fragment from fibronectin and cold-insoluble globulin. J Biol Chem. 1979;254:1429–32.PubMed Balian G, Click EM, Crouch E, Davidson JM, Bornstein P. Isolation of a collagen-binding fragment from fibronectin and cold-insoluble globulin. J Biol Chem. 1979;254:1429–32.PubMed
35.
go back to reference Wells RE, Gawronski TH, Cox PJ, Perera RD. Influence of fibrinogen on flow properties of erythrocyte suspensions. Am J Physiol. 1964;207:1035–40.PubMed Wells RE, Gawronski TH, Cox PJ, Perera RD. Influence of fibrinogen on flow properties of erythrocyte suspensions. Am J Physiol. 1964;207:1035–40.PubMed
36.
go back to reference Baskurt OK, Temiz A, Meiselman HJ. Red blood cell aggregation in experimental sepsis. J Lab Clin Med. 1997;130:183–90.CrossRefPubMed Baskurt OK, Temiz A, Meiselman HJ. Red blood cell aggregation in experimental sepsis. J Lab Clin Med. 1997;130:183–90.CrossRefPubMed
38.
go back to reference Brun JF, Supparo I, Fons C, El Bouhmadi A, Orsetti A. Low values of blood viscosity and erythrocyte aggregation are associated with lower increases in blood lactate during submaximal exercise. Clin Hemorheol Microcirc. 1994;14:105–16. Brun JF, Supparo I, Fons C, El Bouhmadi A, Orsetti A. Low values of blood viscosity and erythrocyte aggregation are associated with lower increases in blood lactate during submaximal exercise. Clin Hemorheol Microcirc. 1994;14:105–16.
39.
go back to reference Brun JF, Belhabas H, Granat MC, Sagnes C, Thöni G, Micallef JP, et al. Postexercise red cell aggregation is negatively correlated with blood lactate rate of disappearance. Clin Hemorheol Microcirc. 2002;26:231–9.PubMed Brun JF, Belhabas H, Granat MC, Sagnes C, Thöni G, Micallef JP, et al. Postexercise red cell aggregation is negatively correlated with blood lactate rate of disappearance. Clin Hemorheol Microcirc. 2002;26:231–9.PubMed
40.
go back to reference Cicha I, Suzuki Y, Tateishi N, Maeda N. Changes of RBC aggregation in oxygenation-deoxygenation: pH dependency and cell morphology. Am J Physiol. 2003;284:H2335–42. Cicha I, Suzuki Y, Tateishi N, Maeda N. Changes of RBC aggregation in oxygenation-deoxygenation: pH dependency and cell morphology. Am J Physiol. 2003;284:H2335–42.
Metadata
Title
Effects of synthetic colloid and crystalloid solutions on hemorheology in vitro and in hemorrhagic shock
Authors
Gan Chen
Jingxiang Zhao
Penglong Li
Xuemei Kan
Guoxing You
Ying Wang
Yujing Yin
Xin Luo
Yuhua Zhang
Lian Zhao
Hong Zhou
Publication date
01-12-2015
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2015
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-015-0088-6

Other articles of this Issue 1/2015

European Journal of Medical Research 1/2015 Go to the issue