Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 12/2017

01-12-2017 | Retinal Disorders

Signal reduction in choriocapillaris and segmentation errors in spectral domain OCT angiography caused by soft drusen

Authors: F. Alten, J. L. Lauermann, C. R. Clemens, P. Heiduschka, N. Eter

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 12/2017

Login to get access

Abstract

Purpose

To analyze signal reduction in choriocapillaris (CC) and segmentation errors in spectral domain optical coherence tomography angiography (OCT-A) caused by soft drusen due to age-related macular degeneration (AMD).

Methods

Twenty-four eyes of 24 patients underwent multimodal retinal imaging including central 3 × 3mm2 OCT-A (AngioVue, Optovue). Three drusen per study eye were randomly chosen and evaluated regarding drusen height, diameter, and accuracy of OCT-A layer segmentation in lesion proximity. Structural en-face OCT CC images were graded qualitatively and quantitatively regarding signal loss underneath the individual drusen area. Those drusen that showed no distinct signal loss in structural en-face OCT CC images were further evaluated in OCT-A. CC decorrelation signal index was measured within a 30-μm OCT-A CC slab in the exact area of drusen affection. Data were compared to healthy age-matched control subjects. Accuracy of layer segmentation, OCT CC data, and OCT-A CC data were correlated to morphological drusen parameters.

Results

Mean drusen height and diameter were 91.57 ± 19.5μm and 315.17 ± 116.7μm. OCT-A layer segmentation of the inner plexiform layer (IPL) was disturbed by more than 50 μm in proximity to 26 drusen (36.1%). In these patients, drusen height was significantly higher compared to those with accurate IPL segmentation (p = 0.0126). Sixty-six out of 72 drusen (91.7%) caused a distinct signal loss in the structural en-face OCT CC image. Drusen height and drusen diameter were significantly higher in this group compared to the six drusen with a sufficient signal (p = 0.0276, p = 0.0025). CC decorrelation signal index measured in the area of these six drusen without OCT signal loss (8.3%) was reduced compared to age-matched healthy controls (73.6 vs. 100.1; p = 0.001).

Conclusions

Signal attenuation in CC slabs and segmentation errors of the IPL depend on drusen morphology. Both are frequent artifacts in OCT-A imaging in patients with soft drusen and must be considered during image analysis.
Literature
2.
go back to reference Age-Related Eye Disease Study Research Group (2001) The age-related eye disease study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the age-related eye disease study report number 6. Am J Ophthalmol 132:668–681CrossRef Age-Related Eye Disease Study Research Group (2001) The age-related eye disease study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the age-related eye disease study report number 6. Am J Ophthalmol 132:668–681CrossRef
3.
go back to reference Klein ML, Ferris FL 3rd, Armstrong J et al (2008) Retinal precursors and the development of geographic atrophy in age-related macular degeneration. Ophthalmology 115:1026–1031CrossRefPubMed Klein ML, Ferris FL 3rd, Armstrong J et al (2008) Retinal precursors and the development of geographic atrophy in age-related macular degeneration. Ophthalmology 115:1026–1031CrossRefPubMed
4.
go back to reference Klein R, Klein BE, Jensen SC, Meuer SM (1997) The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104:7–21CrossRefPubMed Klein R, Klein BE, Jensen SC, Meuer SM (1997) The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104:7–21CrossRefPubMed
5.
go back to reference Lutty G, Grunwald J, Majji AB, Uyama M, Yoneya S (1999) Changes in choriocapillaris and retinal pigment epithelium in age-related macular degeneration. Mol Vis 5:35PubMed Lutty G, Grunwald J, Majji AB, Uyama M, Yoneya S (1999) Changes in choriocapillaris and retinal pigment epithelium in age-related macular degeneration. Mol Vis 5:35PubMed
6.
go back to reference Lengyel I, Tufail A, Hosaini HA, Luthert P, Bird AC, Jeffery G (2004) Association of drusen deposition with choroidal intercapillary pillars in the aging human eye. Invest Ophthalmol Vis Sci 45:2886–2892CrossRefPubMed Lengyel I, Tufail A, Hosaini HA, Luthert P, Bird AC, Jeffery G (2004) Association of drusen deposition with choroidal intercapillary pillars in the aging human eye. Invest Ophthalmol Vis Sci 45:2886–2892CrossRefPubMed
7.
go back to reference Mullins RF, Johnson MN, Faidley EA, Skeie JM, Huang J (2011) Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Invest Ophthalmol Vis Sci 52:1606–1612CrossRefPubMedPubMedCentral Mullins RF, Johnson MN, Faidley EA, Skeie JM, Huang J (2011) Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Invest Ophthalmol Vis Sci 52:1606–1612CrossRefPubMedPubMedCentral
8.
9.
go back to reference Jia Y, Bailey ST, Hwang TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395–E2402CrossRefPubMedPubMedCentral Jia Y, Bailey ST, Hwang TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395–E2402CrossRefPubMedPubMedCentral
11.
go back to reference Ghasemi Falavarjani K, Al-Sheikh M, Akil H, Sadda SR (2017) Image artefacts in swept-source optical coherence tomography angiography. Br J Ophthalmol 101:564–568CrossRefPubMed Ghasemi Falavarjani K, Al-Sheikh M, Akil H, Sadda SR (2017) Image artefacts in swept-source optical coherence tomography angiography. Br J Ophthalmol 101:564–568CrossRefPubMed
12.
go back to reference Chen FK, Viljoen RD, Bukowska DM (2016) Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases. Clin Experiment Ophthalmol 44:388–399CrossRefPubMed Chen FK, Viljoen RD, Bukowska DM (2016) Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases. Clin Experiment Ophthalmol 44:388–399CrossRefPubMed
13.
go back to reference Zheng F, Roisman L, Schaal KB, Miller AR, Robbins G, Gregori G, Rosenfeld PJ (2016) Artifactual flow signals within drusen detected by OCT angiography. Ophthalmic Surg Lasers Imaging Retina 47:517–522PubMed Zheng F, Roisman L, Schaal KB, Miller AR, Robbins G, Gregori G, Rosenfeld PJ (2016) Artifactual flow signals within drusen detected by OCT angiography. Ophthalmic Surg Lasers Imaging Retina 47:517–522PubMed
14.
go back to reference Lane M, Moult EM, Novais EA et al (2016) Visualizing the choriocapillaris under drusen: comparing 1050-nm swept-source versus 840-nm spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT585–OCT590CrossRefPubMedPubMedCentral Lane M, Moult EM, Novais EA et al (2016) Visualizing the choriocapillaris under drusen: comparing 1050-nm swept-source versus 840-nm spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT585–OCT590CrossRefPubMedPubMedCentral
15.
go back to reference Spaide RF, Klancnik JM Jr, Cooney MJ et al (2015) Volume-rendering optical coherence tomography angiography of macular telangiectasia type 2. Ophthalmology 122:2261–2269CrossRefPubMed Spaide RF, Klancnik JM Jr, Cooney MJ et al (2015) Volume-rendering optical coherence tomography angiography of macular telangiectasia type 2. Ophthalmology 122:2261–2269CrossRefPubMed
16.
go back to reference Ferris FL, Wilkinson CP, Bird A et al (2013) Clinical classification of age-related macular degeneration. Ophthalmol 120:844–851CrossRef Ferris FL, Wilkinson CP, Bird A et al (2013) Clinical classification of age-related macular degeneration. Ophthalmol 120:844–851CrossRef
17.
go back to reference Fujiwara T, Imamura Y, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148:445–450CrossRefPubMed Fujiwara T, Imamura Y, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148:445–450CrossRefPubMed
18.
go back to reference Lauermann JL, Treder M, Heiduschka P, Clemens CR, Eter N, Alten F (2017) Impact of eye tracking technology on OCT-angiography imaging quality in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 255:1535–1542CrossRefPubMed Lauermann JL, Treder M, Heiduschka P, Clemens CR, Eter N, Alten F (2017) Impact of eye tracking technology on OCT-angiography imaging quality in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 255:1535–1542CrossRefPubMed
19.
go back to reference Balaratnasingam C, Messinger JD, Sloan KR, Yannuzzi LA, Freund KB, Curcio CA (2017) Histologic and optical coherence tomographic correlates in drusenoid pigment epithelium detachment in age-related macular degeneration. Ophthalmol 124:644–656CrossRef Balaratnasingam C, Messinger JD, Sloan KR, Yannuzzi LA, Freund KB, Curcio CA (2017) Histologic and optical coherence tomographic correlates in drusenoid pigment epithelium detachment in age-related macular degeneration. Ophthalmol 124:644–656CrossRef
20.
go back to reference Lumbroso B, Huang D, Jia Y, Rispoli M, Romano A, Waheed NK (2015) Clinical OCT Angiography Atlas. Jaypee Brothers Medical Publishers, New DelhiCrossRef Lumbroso B, Huang D, Jia Y, Rispoli M, Romano A, Waheed NK (2015) Clinical OCT Angiography Atlas. Jaypee Brothers Medical Publishers, New DelhiCrossRef
21.
go back to reference Alshareef RA, Goud A, Mikhail M et al (2017) Segmentation errors in macular ganglion cell analysis as determined by optical coherence tomography in eyes with macular pathology. Int J Retina Vitreous 3:25CrossRefPubMedPubMedCentral Alshareef RA, Goud A, Mikhail M et al (2017) Segmentation errors in macular ganglion cell analysis as determined by optical coherence tomography in eyes with macular pathology. Int J Retina Vitreous 3:25CrossRefPubMedPubMedCentral
22.
go back to reference Choi W, Moult EM, Waheed NK et al (2015) Ultrahigh-speed, sweptsource optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology 122:2532–2544CrossRefPubMedPubMedCentral Choi W, Moult EM, Waheed NK et al (2015) Ultrahigh-speed, sweptsource optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology 122:2532–2544CrossRefPubMedPubMedCentral
23.
go back to reference Alten F, Heiduschka P, Clemens CR, Eter N (2016) Exploring choriocapillaris under reticular pseudodrusen using OCT-Angiography. Graefes Arch Clin Exp Ophthalmol. 254:2165–2173CrossRefPubMed Alten F, Heiduschka P, Clemens CR, Eter N (2016) Exploring choriocapillaris under reticular pseudodrusen using OCT-Angiography. Graefes Arch Clin Exp Ophthalmol. 254:2165–2173CrossRefPubMed
24.
go back to reference Lauermann JL, Heiduschka P, Nelis P et al (2017) Comparison of choriocapillaris flow measurements between two optical coherence tomography angiography devices. Ophthalmol 237:238–246CrossRef Lauermann JL, Heiduschka P, Nelis P et al (2017) Comparison of choriocapillaris flow measurements between two optical coherence tomography angiography devices. Ophthalmol 237:238–246CrossRef
25.
go back to reference Rogala J, Zangerl B, Assaad N, Fletcher EL, Kalloniatis M, Nivison-Smith L (2015) In vivo quantification of retinal changes associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 56:1689–1700CrossRefPubMed Rogala J, Zangerl B, Assaad N, Fletcher EL, Kalloniatis M, Nivison-Smith L (2015) In vivo quantification of retinal changes associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 56:1689–1700CrossRefPubMed
26.
go back to reference Niu S, Chen Q, de Sisternes L, Rubin DL, Zhang W, Liu Q (2014) Automated retinal layers segmentation in SD-OCT images using dual gradient and spatial correlation smoothness constraint. Comput Biol Med 54:116–128CrossRefPubMed Niu S, Chen Q, de Sisternes L, Rubin DL, Zhang W, Liu Q (2014) Automated retinal layers segmentation in SD-OCT images using dual gradient and spatial correlation smoothness constraint. Comput Biol Med 54:116–128CrossRefPubMed
27.
go back to reference Lujan BJ, Roorda A, Knighton RW, Carroll J (2011) Revealing Henle's fiber layer using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1486–1492CrossRefPubMedPubMedCentral Lujan BJ, Roorda A, Knighton RW, Carroll J (2011) Revealing Henle's fiber layer using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1486–1492CrossRefPubMedPubMedCentral
29.
go back to reference Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135:259–262CrossRefPubMed Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135:259–262CrossRefPubMed
30.
go back to reference Biesemeier A, Taubitz T, Julien S et al (2014) Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration. Neurobiol Aging 35:2562–2573CrossRefPubMed Biesemeier A, Taubitz T, Julien S et al (2014) Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration. Neurobiol Aging 35:2562–2573CrossRefPubMed
31.
go back to reference Kvanta A, Casselholm de Salles M, Amrén U, Bartuma H (2017) Optical coherence tomography angiography of the foveal microvasculature in geographic atrophy. Retina. 37:936–942CrossRefPubMed Kvanta A, Casselholm de Salles M, Amrén U, Bartuma H (2017) Optical coherence tomography angiography of the foveal microvasculature in geographic atrophy. Retina. 37:936–942CrossRefPubMed
32.
go back to reference Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, Bailey ST, Huang D (2016) Optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT27–OCT36CrossRefPubMedPubMedCentral Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, Bailey ST, Huang D (2016) Optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT27–OCT36CrossRefPubMedPubMedCentral
33.
go back to reference Novais EA, Adhi M, Moult EM et al (2016) Choroidal neovascularization analyzes on ultrahigh-speed swept-source optical coherence tomography angiography. Am J Ophthalmol 164:80–88CrossRefPubMedPubMedCentral Novais EA, Adhi M, Moult EM et al (2016) Choroidal neovascularization analyzes on ultrahigh-speed swept-source optical coherence tomography angiography. Am J Ophthalmol 164:80–88CrossRefPubMedPubMedCentral
36.
go back to reference Whitmore SS, Sohn EH, Chirco KR et al (2015) Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 45:1e29CrossRef Whitmore SS, Sohn EH, Chirco KR et al (2015) Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 45:1e29CrossRef
37.
go back to reference Moult EM, Waheed NK, Novais EA et al (2016) Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy. Retina 36(Suppl 1):S2–S11CrossRefPubMedPubMedCentral Moult EM, Waheed NK, Novais EA et al (2016) Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy. Retina 36(Suppl 1):S2–S11CrossRefPubMedPubMedCentral
38.
go back to reference Ploner SB, Moult EM, Choi W et al (2016) Towards quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis. Retina 36(Suppl 1):S118–S126CrossRefPubMedPubMedCentral Ploner SB, Moult EM, Choi W et al (2016) Towards quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis. Retina 36(Suppl 1):S118–S126CrossRefPubMedPubMedCentral
Metadata
Title
Signal reduction in choriocapillaris and segmentation errors in spectral domain OCT angiography caused by soft drusen
Authors
F. Alten
J. L. Lauermann
C. R. Clemens
P. Heiduschka
N. Eter
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 12/2017
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-017-3813-8

Other articles of this Issue 12/2017

Graefe's Archive for Clinical and Experimental Ophthalmology 12/2017 Go to the issue