Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2010

Open Access 01-12-2010 | Research

Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

Authors: Pei-Chun Kao, Cara L Lewis, Daniel P Ferris

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2010

Login to get access

Abstract

Background

To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking.

Methods

We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography.

Results

When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions.

Conclusion

These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.
Appendix
Available only for authorised users
Literature
1.
go back to reference Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke 2002, 33: 2895-2901. 10.1161/01.STR.0000035734.61539.F6CrossRefPubMed Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke 2002, 33: 2895-2901. 10.1161/01.STR.0000035734.61539.F6CrossRefPubMed
2.
go back to reference Sawicki GS, Domingo A, Ferris DP: The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. Journal of Neuroengineering and Rehabilitation 2006, 3: 3. 10.1186/1743-0003-3-3PubMedCentralCrossRefPubMed Sawicki GS, Domingo A, Ferris DP: The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. Journal of Neuroengineering and Rehabilitation 2006, 3: 3. 10.1186/1743-0003-3-3PubMedCentralCrossRefPubMed
3.
go back to reference Wirz M, Colombo G, Dietz V: Long term effects of locomotor training in spinal humans. Journal of Neurology Neurosurgery and Psychiatry 2001, 71: 93-96. 10.1136/jnnp.71.1.93CrossRef Wirz M, Colombo G, Dietz V: Long term effects of locomotor training in spinal humans. Journal of Neurology Neurosurgery and Psychiatry 2001, 71: 93-96. 10.1136/jnnp.71.1.93CrossRef
4.
go back to reference Colombo G, Wirz M, Dietz V: Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001, 39: 252-255. 10.1038/sj.sc.3101154CrossRefPubMed Colombo G, Wirz M, Dietz V: Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001, 39: 252-255. 10.1038/sj.sc.3101154CrossRefPubMed
5.
go back to reference Banala SK, Kim SH, Agrawal SK, Scholz JP: Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX). In 10th IEEE International Conference on Rehabilitation Robotics; Jun 13-15. Noordwijk, NETHERLANDS; 2007:2-8. Banala SK, Kim SH, Agrawal SK, Scholz JP: Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX). In 10th IEEE International Conference on Rehabilitation Robotics; Jun 13-15. Noordwijk, NETHERLANDS; 2007:2-8.
6.
go back to reference Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. Ieee Transactions on Biomedical Engineering 2008, 55: 322-334. 10.1109/TBME.2007.910683CrossRefPubMed Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. Ieee Transactions on Biomedical Engineering 2008, 55: 322-334. 10.1109/TBME.2007.910683CrossRefPubMed
7.
go back to reference Emken JL, Benitez R, Reinkensmeyer DJ: Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed. Journal of Neuroengineering and Rehabilitation 2007, 4: 8. 10.1186/1743-0003-4-8PubMedCentralCrossRefPubMed Emken JL, Benitez R, Reinkensmeyer DJ: Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed. Journal of Neuroengineering and Rehabilitation 2007, 4: 8. 10.1186/1743-0003-4-8PubMedCentralCrossRefPubMed
8.
go back to reference Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. In 10th IEEE International Conference on Rehabilitation Robotics; Jun 13-15. Noordwijk, NETHERLANDS; 2007:387-400. Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. In 10th IEEE International Conference on Rehabilitation Robotics; Jun 13-15. Noordwijk, NETHERLANDS; 2007:387-400.
9.
go back to reference Cain SM, Gordon KE, Ferris DP: Locomotor adaptation to a powered ankle-foot orthosis depends on control method. Journal of Neuroengineering and Rehabilitation 2007, 4: 48. 10.1186/1743-0003-4-48PubMedCentralCrossRefPubMed Cain SM, Gordon KE, Ferris DP: Locomotor adaptation to a powered ankle-foot orthosis depends on control method. Journal of Neuroengineering and Rehabilitation 2007, 4: 48. 10.1186/1743-0003-4-48PubMedCentralCrossRefPubMed
10.
11.
go back to reference Reinkensmeyer DJ, Patton JL: Can Robots Help the Learning of Skilled Actions? Exercise and Sport Sciences Reviews 2009, 37: 43-51. 10.1097/JES.0b013e3181912108PubMedCentralCrossRefPubMed Reinkensmeyer DJ, Patton JL: Can Robots Help the Learning of Skilled Actions? Exercise and Sport Sciences Reviews 2009, 37: 43-51. 10.1097/JES.0b013e3181912108PubMedCentralCrossRefPubMed
12.
go back to reference Huang VS, Krakauer JW: Robotic neurorehabilitation: a computational motor learning perspective. Journal of Neuroengineering and Rehabilitation 2009, 6: 5. 10.1186/1743-0003-6-5PubMedCentralCrossRefPubMed Huang VS, Krakauer JW: Robotic neurorehabilitation: a computational motor learning perspective. Journal of Neuroengineering and Rehabilitation 2009, 6: 5. 10.1186/1743-0003-6-5PubMedCentralCrossRefPubMed
13.
go back to reference Marchal-Crespo L, Reinkensmeyer DJ: Review of control strategies for robotic movement training after neurologic injury. Journal of Neuroengineering and Rehabilitation 2009, 6: 20. 10.1186/1743-0003-6-20PubMedCentralCrossRefPubMed Marchal-Crespo L, Reinkensmeyer DJ: Review of control strategies for robotic movement training after neurologic injury. Journal of Neuroengineering and Rehabilitation 2009, 6: 20. 10.1186/1743-0003-6-20PubMedCentralCrossRefPubMed
14.
go back to reference Gordon KE, Ferris DP: Learning to walk with a robotic ankle exoskeleton. Journal of Biomechanics 2007, 40: 2636-2644. 10.1016/j.jbiomech.2006.12.006CrossRefPubMed Gordon KE, Ferris DP: Learning to walk with a robotic ankle exoskeleton. Journal of Biomechanics 2007, 40: 2636-2644. 10.1016/j.jbiomech.2006.12.006CrossRefPubMed
15.
go back to reference Kao PC, Lewis CL, Ferris DP: Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Journal of Biomechanics 2010, 43: 203-209. 10.1016/j.jbiomech.2009.09.030PubMedCentralCrossRefPubMed Kao PC, Lewis CL, Ferris DP: Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Journal of Biomechanics 2010, 43: 203-209. 10.1016/j.jbiomech.2009.09.030PubMedCentralCrossRefPubMed
16.
go back to reference Kuo AD, Donelan JM, Ruina A: Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exercise and Sport Sciences Reviews 2005, 33: 88-97. 10.1097/00003677-200504000-00006CrossRefPubMed Kuo AD, Donelan JM, Ruina A: Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exercise and Sport Sciences Reviews 2005, 33: 88-97. 10.1097/00003677-200504000-00006CrossRefPubMed
17.
go back to reference Nadeau S, Arsenault AB, Gravel D, Bourbonnais D: Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. Am J Phys Med Rehabil 1999, 78: 123-130. 10.1097/00002060-199903000-00007CrossRefPubMed Nadeau S, Arsenault AB, Gravel D, Bourbonnais D: Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. Am J Phys Med Rehabil 1999, 78: 123-130. 10.1097/00002060-199903000-00007CrossRefPubMed
18.
go back to reference Kim CM, Eng JJ: The relationship of lower-extremity muscle torque to locomotor performance in people with stroke. Physical Therapy 2003, 83: 49-57.PubMed Kim CM, Eng JJ: The relationship of lower-extremity muscle torque to locomotor performance in people with stroke. Physical Therapy 2003, 83: 49-57.PubMed
19.
go back to reference Chen G, Patten C: Joint moment work during the stance-to-swing transition in hemiparetic subjects. Journal of Biomechanics 2008, 41: 877-883. 10.1016/j.jbiomech.2007.10.017CrossRefPubMed Chen G, Patten C: Joint moment work during the stance-to-swing transition in hemiparetic subjects. Journal of Biomechanics 2008, 41: 877-883. 10.1016/j.jbiomech.2007.10.017CrossRefPubMed
20.
go back to reference Yang JF, Stein RB, James KB: Contribution of peripheral afferents to the activation of the soleus muscle during walking in humans. Experimental Brain Research 1991, 87: 679-687. 10.1007/BF00227094CrossRefPubMed Yang JF, Stein RB, James KB: Contribution of peripheral afferents to the activation of the soleus muscle during walking in humans. Experimental Brain Research 1991, 87: 679-687. 10.1007/BF00227094CrossRefPubMed
21.
go back to reference Sinkjaer T, Andersen JB, Larsen B: Soleus stretch reflex modulation during gait in humans. Journal of Neurophysiology 1996, 76: 1112-1120.PubMed Sinkjaer T, Andersen JB, Larsen B: Soleus stretch reflex modulation during gait in humans. Journal of Neurophysiology 1996, 76: 1112-1120.PubMed
22.
go back to reference Nielsen JB, Sinkjaer T: Afferent feedback in the control of human gait. Journal of Electromyography and Kinesiology 2002, 12: 213-217. 10.1016/S1050-6411(02)00023-8CrossRefPubMed Nielsen JB, Sinkjaer T: Afferent feedback in the control of human gait. Journal of Electromyography and Kinesiology 2002, 12: 213-217. 10.1016/S1050-6411(02)00023-8CrossRefPubMed
23.
go back to reference Mazzaro N, Grey MJ, Sinkjaer T: Contribution of afferent feedback to the soleus muscle activity during human locomotion. Journal of Neurophysiology 2005, 93: 167-177. 10.1152/jn.00283.2004CrossRefPubMed Mazzaro N, Grey MJ, Sinkjaer T: Contribution of afferent feedback to the soleus muscle activity during human locomotion. Journal of Neurophysiology 2005, 93: 167-177. 10.1152/jn.00283.2004CrossRefPubMed
24.
go back to reference Mazzaro N, Grey MJ, Sinkjaer T, Andersen JB, Pareyson D, Schieppati M: Lack of on-going adaptations in the soleus muscle activity during walking in patients affected by large-fiber neuropathy. Journal of Neurophysiology 2005, 93: 3075-3085. 10.1152/jn.01071.2004CrossRefPubMed Mazzaro N, Grey MJ, Sinkjaer T, Andersen JB, Pareyson D, Schieppati M: Lack of on-going adaptations in the soleus muscle activity during walking in patients affected by large-fiber neuropathy. Journal of Neurophysiology 2005, 93: 3075-3085. 10.1152/jn.01071.2004CrossRefPubMed
25.
go back to reference Rossignol S, Dubuc RJ, Gossard JP: Dynamic sensorimotor interactions in locomotion. Physiological Reviews 2006, 86: 89-154. 10.1152/physrev.00028.2005CrossRefPubMed Rossignol S, Dubuc RJ, Gossard JP: Dynamic sensorimotor interactions in locomotion. Physiological Reviews 2006, 86: 89-154. 10.1152/physrev.00028.2005CrossRefPubMed
26.
go back to reference af Klint R, Nielsen JB, Cole J, Sinkjaer T, Grey MJ: Within-step modulation of leg muscle activity by afferent feedback in human walking. Journal of Physiology-London 2008, 586: 4643-4648. 10.1113/jphysiol.2008.155002CrossRef af Klint R, Nielsen JB, Cole J, Sinkjaer T, Grey MJ: Within-step modulation of leg muscle activity by afferent feedback in human walking. Journal of Physiology-London 2008, 586: 4643-4648. 10.1113/jphysiol.2008.155002CrossRef
27.
go back to reference af Klint R, Nielsen JB, Sinkjaer T, Grey MJ: Sudden Drop in Ground Support Produces Force-Related Unload Response in Human Overground Walking. Journal of Neurophysiology 2009, 101: 1705-1712. 10.1152/jn.91175.2008CrossRefPubMed af Klint R, Nielsen JB, Sinkjaer T, Grey MJ: Sudden Drop in Ground Support Produces Force-Related Unload Response in Human Overground Walking. Journal of Neurophysiology 2009, 101: 1705-1712. 10.1152/jn.91175.2008CrossRefPubMed
28.
go back to reference Phadke CP, Wu SS, Thompson FJ, Behrman AL: Comparison of soleus H-reflex modulation after incomplete spinal cord injury in 2 walking environments: Treadmill with body weight support and overground. Archives Of Physical Medicine And Rehabilitation 2007, 88: 1606-1613. 10.1016/j.apmr.2007.07.031CrossRefPubMed Phadke CP, Wu SS, Thompson FJ, Behrman AL: Comparison of soleus H-reflex modulation after incomplete spinal cord injury in 2 walking environments: Treadmill with body weight support and overground. Archives Of Physical Medicine And Rehabilitation 2007, 88: 1606-1613. 10.1016/j.apmr.2007.07.031CrossRefPubMed
29.
go back to reference Yang JF, Fung J, Edamura M, Blunt R, Stein RB, Barbeau H: H-reflex modulation during walking in spastic paretic subjects. Canadian Journal of Neurological Sciences 1991, 18: 443-452.PubMed Yang JF, Fung J, Edamura M, Blunt R, Stein RB, Barbeau H: H-reflex modulation during walking in spastic paretic subjects. Canadian Journal of Neurological Sciences 1991, 18: 443-452.PubMed
31.
go back to reference Dietz V: Proprioception and locomotor disorders. Nature Reviews Neuroscience 2002, 3: 781-790. 10.1038/nrn939CrossRefPubMed Dietz V: Proprioception and locomotor disorders. Nature Reviews Neuroscience 2002, 3: 781-790. 10.1038/nrn939CrossRefPubMed
32.
go back to reference Knikou M, Angeli CA, Ferreira CK, Harkema SJ: Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Experimental Brain Research 2009, 193: 397-407. 10.1007/s00221-008-1636-xCrossRefPubMed Knikou M, Angeli CA, Ferreira CK, Harkema SJ: Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Experimental Brain Research 2009, 193: 397-407. 10.1007/s00221-008-1636-xCrossRefPubMed
33.
go back to reference Yelnik A, Albert T, Bonan I, Laffont I: A clinical guide to assess the role of lower limb extensor overactivity in hemiplegic gait disorders. Stroke 1999, 30: 580-585.CrossRefPubMed Yelnik A, Albert T, Bonan I, Laffont I: A clinical guide to assess the role of lower limb extensor overactivity in hemiplegic gait disorders. Stroke 1999, 30: 580-585.CrossRefPubMed
34.
go back to reference Knikou M, Angeli CA, Ferreira CK, Harkema SJ: Soleus H-reflex gain, threshold, and amplitude as function of body posture and load in spinal cord intact and injured subjects. International Journal of Neuroscience 2009, 119: 2056-2073. 10.1080/00207450903139747CrossRefPubMed Knikou M, Angeli CA, Ferreira CK, Harkema SJ: Soleus H-reflex gain, threshold, and amplitude as function of body posture and load in spinal cord intact and injured subjects. International Journal of Neuroscience 2009, 119: 2056-2073. 10.1080/00207450903139747CrossRefPubMed
35.
go back to reference Trimble MH, Kukulka CG, Behrman AL: The effect of treadmill gait training on low-frequency depression of the soleus H-reflex: comparison of a spinal cord injured man to normal subjects. Neuroscience Letters 1998, 246: 186-188. 10.1016/S0304-3940(98)00259-6CrossRefPubMed Trimble MH, Kukulka CG, Behrman AL: The effect of treadmill gait training on low-frequency depression of the soleus H-reflex: comparison of a spinal cord injured man to normal subjects. Neuroscience Letters 1998, 246: 186-188. 10.1016/S0304-3940(98)00259-6CrossRefPubMed
36.
go back to reference Trimble MH, Behrman AL, Flynn SM, Thigpen MT, Thompson FJ: Acute effects of locomotor training on overground walking speed and H-reflex modulation in individuals with incomplete spinal cord injury. Journal of Spinal Cord Medicine 2001, 24: 74-80.PubMed Trimble MH, Behrman AL, Flynn SM, Thigpen MT, Thompson FJ: Acute effects of locomotor training on overground walking speed and H-reflex modulation in individuals with incomplete spinal cord injury. Journal of Spinal Cord Medicine 2001, 24: 74-80.PubMed
37.
go back to reference Chen Y, Chen XY, Jakeman LB, Chen L, Stokes BT, Wolpaw JR: Operant conditioning of H-reflex can correct a locomotor abnormality after spinal cord injury in rats. Journal of Neuroscience 2006, 26: 12537-12543. 10.1523/JNEUROSCI.2198-06.2006CrossRefPubMed Chen Y, Chen XY, Jakeman LB, Chen L, Stokes BT, Wolpaw JR: Operant conditioning of H-reflex can correct a locomotor abnormality after spinal cord injury in rats. Journal of Neuroscience 2006, 26: 12537-12543. 10.1523/JNEUROSCI.2198-06.2006CrossRefPubMed
38.
go back to reference Mazzocchio R, Kitago T, Liuzzi G, Wolpaw JR, Cohen LG: Plastic changes in the human H-reflex pathway at rest following skillful cycling training. Clinical Neurophysiology 2006, 117: 1682-1691. 10.1016/j.clinph.2006.04.019CrossRefPubMed Mazzocchio R, Kitago T, Liuzzi G, Wolpaw JR, Cohen LG: Plastic changes in the human H-reflex pathway at rest following skillful cycling training. Clinical Neurophysiology 2006, 117: 1682-1691. 10.1016/j.clinph.2006.04.019CrossRefPubMed
39.
go back to reference Mynark RG, Koceja DM: Down training of the elderly soleus H reflex with the use of a spinally induced balance perturbation. Journal of Applied Physiology 2002, 93: 127-133.CrossRefPubMed Mynark RG, Koceja DM: Down training of the elderly soleus H reflex with the use of a spinally induced balance perturbation. Journal of Applied Physiology 2002, 93: 127-133.CrossRefPubMed
40.
go back to reference Trimble MH, Koceja DM: Modulation of the triceps surae H-reflex with training. International Journal of Neuroscience 1994, 76: 293-303. 10.3109/00207459408986011CrossRefPubMed Trimble MH, Koceja DM: Modulation of the triceps surae H-reflex with training. International Journal of Neuroscience 1994, 76: 293-303. 10.3109/00207459408986011CrossRefPubMed
41.
go back to reference Schneider C, Capaday C: Progressive adaptation of the soleus H-reflex with daily training at walking backward. Journal of Neurophysiology 2003, 89: 648-656. 10.1152/jn.00403.2002CrossRefPubMed Schneider C, Capaday C: Progressive adaptation of the soleus H-reflex with daily training at walking backward. Journal of Neurophysiology 2003, 89: 648-656. 10.1152/jn.00403.2002CrossRefPubMed
42.
go back to reference Thompson AK, Chen XY, Wolpaw JR: Acquisition of a Simple Motor Skill: Task-Dependent Adaptation Plus Long-Term Change in the Human Soleus H-Reflex. Journal of Neuroscience 2009, 29: 5784-5792. 10.1523/JNEUROSCI.4326-08.2009PubMedCentralCrossRefPubMed Thompson AK, Chen XY, Wolpaw JR: Acquisition of a Simple Motor Skill: Task-Dependent Adaptation Plus Long-Term Change in the Human Soleus H-Reflex. Journal of Neuroscience 2009, 29: 5784-5792. 10.1523/JNEUROSCI.4326-08.2009PubMedCentralCrossRefPubMed
43.
go back to reference Ferris DP, Aagaard P, Simonsen EB, Farley CT, Dyhre-Poulsen P: Soleus H-reflex gain in humans walking and running under simulated reduced gravity. Journal of Physiology (London) 2001, 530: 167-180. 10.1111/j.1469-7793.2001.0167m.xCrossRef Ferris DP, Aagaard P, Simonsen EB, Farley CT, Dyhre-Poulsen P: Soleus H-reflex gain in humans walking and running under simulated reduced gravity. Journal of Physiology (London) 2001, 530: 167-180. 10.1111/j.1469-7793.2001.0167m.xCrossRef
44.
go back to reference Schneider C, Lavoie BA, Capaday C: On the origin of the soleus H-reflex modulation pattern during human walking and its task-dependent differences. J Neurophysiol 2000, 83: 2881-2890.PubMed Schneider C, Lavoie BA, Capaday C: On the origin of the soleus H-reflex modulation pattern during human walking and its task-dependent differences. J Neurophysiol 2000, 83: 2881-2890.PubMed
45.
go back to reference Sinkjaer T: Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man. Acta Neurol Scand Suppl 1997, 170: 1-28.PubMed Sinkjaer T: Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man. Acta Neurol Scand Suppl 1997, 170: 1-28.PubMed
46.
go back to reference Stein RB, Capaday C: The modulation of human reflexes during functional motor tasks. Trends in Neurosciences 1988, 11: 328-332. 10.1016/0166-2236(88)90097-5CrossRefPubMed Stein RB, Capaday C: The modulation of human reflexes during functional motor tasks. Trends in Neurosciences 1988, 11: 328-332. 10.1016/0166-2236(88)90097-5CrossRefPubMed
47.
go back to reference Capaday C, Stein RB: Amplitude modulation of the soleus H-reflex in the human during walking and standing. Journal of Neuroscience 1986, 6: 1308-1313.PubMed Capaday C, Stein RB: Amplitude modulation of the soleus H-reflex in the human during walking and standing. Journal of Neuroscience 1986, 6: 1308-1313.PubMed
48.
go back to reference Dyhre-Poulsen P, Simonsen EB, Voigt M: Dynamic control of muscle stiffness and H reflex modulation during hopping and jumping in man. Journal of Physiology (London) 1991, 437: 287-304.CrossRef Dyhre-Poulsen P, Simonsen EB, Voigt M: Dynamic control of muscle stiffness and H reflex modulation during hopping and jumping in man. Journal of Physiology (London) 1991, 437: 287-304.CrossRef
49.
go back to reference Simonsen EB, Dyhre-Poulsen P: Amplitude of the human soleus H reflex during walking and running. Journal of Physiology-London 1999, 515: 929-939. 10.1111/j.1469-7793.1999.929ab.xCrossRef Simonsen EB, Dyhre-Poulsen P: Amplitude of the human soleus H reflex during walking and running. Journal of Physiology-London 1999, 515: 929-939. 10.1111/j.1469-7793.1999.929ab.xCrossRef
50.
go back to reference Ung RV, Imbeault MA, Ethier C, Brizzi L, Capaday C: On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking. Journal of Neurophysiology 2005, 94: 1133-1142. 10.1152/jn.00181.2005CrossRefPubMed Ung RV, Imbeault MA, Ethier C, Brizzi L, Capaday C: On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking. Journal of Neurophysiology 2005, 94: 1133-1142. 10.1152/jn.00181.2005CrossRefPubMed
51.
go back to reference Ferris DP, Kinnaird CR: Robotic lower limb orthoses for gait rehabilitation after incomplete spinal cord injury. In Proceedings of the 2008 Annual Meeting of the American Spinal Injury Association, June 19-22. San Diego, CA; 2008. Ferris DP, Kinnaird CR: Robotic lower limb orthoses for gait rehabilitation after incomplete spinal cord injury. In Proceedings of the 2008 Annual Meeting of the American Spinal Injury Association, June 19-22. San Diego, CA; 2008.
52.
go back to reference Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics 2005, 21: 189-197.PubMedCentralPubMed Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics 2005, 21: 189-197.PubMedCentralPubMed
53.
go back to reference Ferris DP, Gordon KE, Sawicki GS, Peethambaran A: An improved powered ankle-foot orthosis using proportional myoelectric control. Gait and Posture 2006, 23: 425-428. 10.1016/j.gaitpost.2005.05.004CrossRefPubMed Ferris DP, Gordon KE, Sawicki GS, Peethambaran A: An improved powered ankle-foot orthosis using proportional myoelectric control. Gait and Posture 2006, 23: 425-428. 10.1016/j.gaitpost.2005.05.004CrossRefPubMed
54.
go back to reference Gordon KE, Sawicki GS, Ferris DP: Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. Journal of Biomechanics 2006, 39: 1832-1841. 10.1016/j.jbiomech.2005.05.018CrossRefPubMed Gordon KE, Sawicki GS, Ferris DP: Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. Journal of Biomechanics 2006, 39: 1832-1841. 10.1016/j.jbiomech.2005.05.018CrossRefPubMed
55.
go back to reference Knikou M: The H-reflex as a probe: Pathways and pitfalls. Journal of Neuroscience Methods 2008, 171: 1-12. 10.1016/j.jneumeth.2008.02.012CrossRefPubMed Knikou M: The H-reflex as a probe: Pathways and pitfalls. Journal of Neuroscience Methods 2008, 171: 1-12. 10.1016/j.jneumeth.2008.02.012CrossRefPubMed
56.
go back to reference Capaday C: Neurophysiological methods for studies of the motor system in freely moving human subjects. J Neurosci Methods 1997, 74: 201-218. 10.1016/S0165-0270(97)02250-4CrossRefPubMed Capaday C: Neurophysiological methods for studies of the motor system in freely moving human subjects. J Neurosci Methods 1997, 74: 201-218. 10.1016/S0165-0270(97)02250-4CrossRefPubMed
57.
go back to reference Kao PC, Lewis CL, Ferris DP: Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. Journal of Biomechanics 2010, 43: 1401-1407. 10.1016/j.jbiomech.2009.12.024PubMedCentralCrossRefPubMed Kao PC, Lewis CL, Ferris DP: Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. Journal of Biomechanics 2010, 43: 1401-1407. 10.1016/j.jbiomech.2009.12.024PubMedCentralCrossRefPubMed
58.
go back to reference Reisman DS, Bastian AJ, Morton SM: Neurophysiologic and rehabilitation insights from the split-belt and other locomotor adaptation paradigms. Physical Therapy 2010, 90: 187-195. 10.2522/ptj.20090073PubMedCentralCrossRefPubMed Reisman DS, Bastian AJ, Morton SM: Neurophysiologic and rehabilitation insights from the split-belt and other locomotor adaptation paradigms. Physical Therapy 2010, 90: 187-195. 10.2522/ptj.20090073PubMedCentralCrossRefPubMed
59.
go back to reference Wolpaw JR: The complex structure of a simple memory. Trends in Neurosciences 1997, 20: 588-594. 10.1016/S0166-2236(97)01133-8CrossRefPubMed Wolpaw JR: The complex structure of a simple memory. Trends in Neurosciences 1997, 20: 588-594. 10.1016/S0166-2236(97)01133-8CrossRefPubMed
60.
go back to reference Wolpaw JR, Okeefe JA: Adaptive Plasticity in the Primate Spinal Stretch Reflex - Evidence for a 2-Phase Process. Journal of Neuroscience 1984, 4: 2718-2724.PubMed Wolpaw JR, Okeefe JA: Adaptive Plasticity in the Primate Spinal Stretch Reflex - Evidence for a 2-Phase Process. Journal of Neuroscience 1984, 4: 2718-2724.PubMed
61.
go back to reference Bastian AJ: Understanding sensorimotor adaptation and learning for rehabilitation. Current Opinion in Neurology 2008, 21: 628-633. 10.1097/WCO.0b013e328315a293PubMedCentralCrossRefPubMed Bastian AJ: Understanding sensorimotor adaptation and learning for rehabilitation. Current Opinion in Neurology 2008, 21: 628-633. 10.1097/WCO.0b013e328315a293PubMedCentralCrossRefPubMed
62.
go back to reference Luft AR, Buitrago MM: Stages of motor skill learning. Molecular Neurobiology 2005, 32: 205-216. 10.1385/MN:32:3:205CrossRefPubMed Luft AR, Buitrago MM: Stages of motor skill learning. Molecular Neurobiology 2005, 32: 205-216. 10.1385/MN:32:3:205CrossRefPubMed
63.
go back to reference Shefchyk SJ, Jordan LM: Excitatory and Inhibitory Postsynaptic Potentials in Alpha-Motoneurons Produced During Fictive Locomotion by Stimulation of the Mesencephalic Locomotor Region. Journal of Neurophysiology 1985, 53: 1345-1355.PubMed Shefchyk SJ, Jordan LM: Excitatory and Inhibitory Postsynaptic Potentials in Alpha-Motoneurons Produced During Fictive Locomotion by Stimulation of the Mesencephalic Locomotor Region. Journal of Neurophysiology 1985, 53: 1345-1355.PubMed
64.
go back to reference Hess F, van Hedel HJA, Dietz V: Obstacle avoidance during human walking: H-reflex modulation during motor learning. Experimental Brain Research 2003, 151: 82-89. 10.1007/s00221-003-1415-7CrossRefPubMed Hess F, van Hedel HJA, Dietz V: Obstacle avoidance during human walking: H-reflex modulation during motor learning. Experimental Brain Research 2003, 151: 82-89. 10.1007/s00221-003-1415-7CrossRefPubMed
Metadata
Title
Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude
Authors
Pei-Chun Kao
Cara L Lewis
Daniel P Ferris
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2010
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-7-33

Other articles of this Issue 1/2010

Journal of NeuroEngineering and Rehabilitation 1/2010 Go to the issue