Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2007

Open Access 01-12-2007 | Research

Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed

Authors: Jeremy L Emken, Raul Benitez, David J Reinkensmeyer

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2007

Login to get access

Abstract

Background

A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning.

Methods

Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability.

Results

We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human.

Conclusion

The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury.
Appendix
Available only for authorised users
Literature
2.
go back to reference Patton JL, Mussa-Ivaldi FA, Rymer WZ: Altering movement patterns in healthy and brain-injured subjects via custom designed robotic forces: Oct; Istanbul, Turkey. ; 2001:1356-1359. Patton JL, Mussa-Ivaldi FA, Rymer WZ: Altering movement patterns in healthy and brain-injured subjects via custom designed robotic forces: Oct; Istanbul, Turkey. ; 2001:1356-1359.
3.
go back to reference Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez J, Ichinose WE, Kerdanyan G, Nessler JA, Maneekobkunwong S, Timoszyk W, Vallance K, Weber R, Wynne JH, de Leon RD, Bobrow JE, Harkema S, Edgerton VR: Robotic Gait Training: Toward More Natural Movements and Optimal Training Algorithms: Sept; San Francisco, CA. ; 2004:4818-4821. Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez J, Ichinose WE, Kerdanyan G, Nessler JA, Maneekobkunwong S, Timoszyk W, Vallance K, Weber R, Wynne JH, de Leon RD, Bobrow JE, Harkema S, Edgerton VR: Robotic Gait Training: Toward More Natural Movements and Optimal Training Algorithms: Sept; San Francisco, CA. ; 2004:4818-4821.
4.
go back to reference Reinkensmeyer DJ, Emken JL, Cramer SC: Robotics, Motor Learning, and Neurologic Recovery. Ann Rev Biomed Engr 2004, 6: 497-525. 10.1146/annurev.bioeng.6.040803.140223CrossRef Reinkensmeyer DJ, Emken JL, Cramer SC: Robotics, Motor Learning, and Neurologic Recovery. Ann Rev Biomed Engr 2004, 6: 497-525. 10.1146/annurev.bioeng.6.040803.140223CrossRef
5.
go back to reference Trombly CA: Occupational therapy for dysfunction, 4th Edition. 4th edition. Baltimore, Williams and Wilkins; 1995. Trombly CA: Occupational therapy for dysfunction, 4th Edition. 4th edition. Baltimore, Williams and Wilkins; 1995.
6.
go back to reference Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Systems & Rehab Engng 2005, 13: 380-394. 10.1109/TNSRE.2005.848628CrossRef Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Systems & Rehab Engng 2005, 13: 380-394. 10.1109/TNSRE.2005.848628CrossRef
7.
go back to reference Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 2006, 168: 368-383. 10.1007/s00221-005-0097-8CrossRefPubMed Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 2006, 168: 368-383. 10.1007/s00221-005-0097-8CrossRefPubMed
8.
go back to reference Kahn LE, Lum PS, Reinkensmeyer DJ: Selection of Robotic Therapy Algorithms for the Upper Extremity in Chronic Stroke: Insights from MIME and ARM Guide Results: ; Kaist, Daejeon, Republic of Korea. ; 2003:208-210. Kahn LE, Lum PS, Reinkensmeyer DJ: Selection of Robotic Therapy Algorithms for the Upper Extremity in Chronic Stroke: Insights from MIME and ARM Guide Results: ; Kaist, Daejeon, Republic of Korea. ; 2003:208-210.
9.
go back to reference Hesse S, Werner C, Uhlenbrock D, von Frankenberg S, Bardeleben A, Brandl-Hesse B: An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results. Neurorehabilitation and Neural Repair 2001, 15: 37-48. 10.1177/154596830101500106CrossRef Hesse S, Werner C, Uhlenbrock D, von Frankenberg S, Bardeleben A, Brandl-Hesse B: An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results. Neurorehabilitation and Neural Repair 2001, 15: 37-48. 10.1177/154596830101500106CrossRef
10.
go back to reference Lum PS, Burgar CG, Shor PC: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Systems & Rehab Engng 2004, 12: 186-194. 10.1109/TNSRE.2004.827225CrossRef Lum PS, Burgar CG, Shor PC: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Systems & Rehab Engng 2004, 12: 186-194. 10.1109/TNSRE.2004.827225CrossRef
11.
go back to reference Colombo G, Wirz M, Dietz V: Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001, 39: 252-255. 10.1038/sj.sc.3101154CrossRefPubMed Colombo G, Wirz M, Dietz V: Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001, 39: 252-255. 10.1038/sj.sc.3101154CrossRefPubMed
12.
go back to reference Amirabdollahian F, Loureiro R, Driessen B, Harwin W: Error correction movement for machine assisted stroke rehabilitation. Assistive Technology Research Series. In Integration of Assistive Technology in the Information Age. Volume 9. Edited by: Mokhtari M. Amsterdam, IOS Press; 2001:60-65. Amirabdollahian F, Loureiro R, Driessen B, Harwin W: Error correction movement for machine assisted stroke rehabilitation. Assistive Technology Research Series. In Integration of Assistive Technology in the Information Age. Volume 9. Edited by: Mokhtari M. Amsterdam, IOS Press; 2001:60-65.
13.
go back to reference Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G: Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Systems & Rehab Engng 2005, 13: 311-324. 10.1109/TNSRE.2005.848352CrossRef Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G: Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Systems & Rehab Engng 2005, 13: 311-324. 10.1109/TNSRE.2005.848352CrossRef
14.
go back to reference Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study. J Neuroengineering and Rehabilitation 2006., to appear: Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study. J Neuroengineering and Rehabilitation 2006., to appear:
15.
go back to reference Johnson MJ, F. VLH, G. BC, Shor P, Leifer LJ: Experimental results using force-feedback cueing in robot-assisted stroke therapy. IEEE Trans Neural Systems & Rehab Engng 2005, 13: 335-348. 10.1109/TNSRE.2005.850428CrossRef Johnson MJ, F. VLH, G. BC, Shor P, Leifer LJ: Experimental results using force-feedback cueing in robot-assisted stroke therapy. IEEE Trans Neural Systems & Rehab Engng 2005, 13: 335-348. 10.1109/TNSRE.2005.850428CrossRef
16.
go back to reference Emken JL, Reinkensmeyer DJ: Robot-enhanced motor learning: Accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Systems & Rehab Engng 2005, 13: 33-39. 10.1109/TNSRE.2004.843173CrossRef Emken JL, Reinkensmeyer DJ: Robot-enhanced motor learning: Accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Systems & Rehab Engng 2005, 13: 33-39. 10.1109/TNSRE.2004.843173CrossRef
17.
go back to reference Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N: Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans Neural Systems & Rehab Engng 2005, 13: 325-334. 10.1109/TNSRE.2005.850423CrossRef Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N: Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans Neural Systems & Rehab Engng 2005, 13: 325-334. 10.1109/TNSRE.2005.850423CrossRef
18.
go back to reference Krebs HK, Palazzolo J, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N: Rehabilitation Robotics: Performance-based Progressive Robot-Assisted Therapy. Autonomous Robots 2003, 15: 7-20. 10.1023/A:1024494031121CrossRef Krebs HK, Palazzolo J, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N: Rehabilitation Robotics: Performance-based Progressive Robot-Assisted Therapy. Autonomous Robots 2003, 15: 7-20. 10.1023/A:1024494031121CrossRef
19.
go back to reference Jezernik S, Colombo G, Morari M: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Robotics and Automation 2004, 20: 574-582. 10.1109/TRA.2004.825515CrossRef Jezernik S, Colombo G, Morari M: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Robotics and Automation 2004, 20: 574-582. 10.1109/TRA.2004.825515CrossRef
20.
go back to reference Shadmehr R, Mussa-Ivaldi FA: Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience 1994, 14: 3208-3224.PubMed Shadmehr R, Mussa-Ivaldi FA: Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience 1994, 14: 3208-3224.PubMed
21.
go back to reference Reinkensmeyer DJ, Emken JL, Liu J, Bobrow JE: The Nervous System Appears to Minimize a Weighted Sum of Kinematic Error, Force, and Change in Force when Adapting to Viscous Environments during Reaching and Stepping: Oct; San Diego, CA,. ; 2004. Reinkensmeyer DJ, Emken JL, Liu J, Bobrow JE: The Nervous System Appears to Minimize a Weighted Sum of Kinematic Error, Force, and Change in Force when Adapting to Viscous Environments during Reaching and Stepping: Oct; San Diego, CA,. ; 2004.
22.
go back to reference Scheidt RA, Dingwell JB, Mussa-Ivaldi FA: Learning to move amid uncertainty. J Neurophysiol 2001, 86: 971-985.PubMed Scheidt RA, Dingwell JB, Mussa-Ivaldi FA: Learning to move amid uncertainty. J Neurophysiol 2001, 86: 971-985.PubMed
23.
24.
go back to reference Vidyasagar M: Nonlinear Systems analysis. 2nd edition. , Prentice Hall; 1993. Vidyasagar M: Nonlinear Systems analysis. 2nd edition. , Prentice Hall; 1993.
25.
go back to reference Reinkensmeyer DJ: How to Retrain Movement after Neurologic Injury: A Computational Rationale for Incorporating Robot (or Therapist) Assistance. Proceedings of the 2003 IEEE Engineering in Medicine and Biology Society Meeting 2003, 2: 1479-1482. Reinkensmeyer DJ: How to Retrain Movement after Neurologic Injury: A Computational Rationale for Incorporating Robot (or Therapist) Assistance. Proceedings of the 2003 IEEE Engineering in Medicine and Biology Society Meeting 2003, 2: 1479-1482.
26.
go back to reference Emken JL, Wynne JH, Harkema SJ, Reinkensmeyer DJ: A robotic device for manipulating human stepping. IEEE Trans Robotics 2006, 22: 185-189. 10.1109/TRO.2005.861481CrossRef Emken JL, Wynne JH, Harkema SJ, Reinkensmeyer DJ: A robotic device for manipulating human stepping. IEEE Trans Robotics 2006, 22: 185-189. 10.1109/TRO.2005.861481CrossRef
27.
go back to reference Caithness G, Osu R, Bays P, Chase H, Klassen J, Kawato M, Wolpert DM, Flanagan JR: Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks. J Neurosci 2004, 24: 8662-8671. 10.1523/JNEUROSCI.2214-04.2004CrossRefPubMed Caithness G, Osu R, Bays P, Chase H, Klassen J, Kawato M, Wolpert DM, Flanagan JR: Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks. J Neurosci 2004, 24: 8662-8671. 10.1523/JNEUROSCI.2214-04.2004CrossRefPubMed
28.
go back to reference Klassen J, Tong C, Flanagan JR: Learning and recall of incremental kinematic and dynamic sensorimotor transformations. Exp Brain Res 2005, 164: 250-259. 10.1007/s00221-005-2247-4CrossRefPubMed Klassen J, Tong C, Flanagan JR: Learning and recall of incremental kinematic and dynamic sensorimotor transformations. Exp Brain Res 2005, 164: 250-259. 10.1007/s00221-005-2247-4CrossRefPubMed
29.
go back to reference Kahn LE, Rymer WZ, Reinkensmeyer DJ: Adaptive assistance for guided force training in chronic stroke: September 1-5; San Francisco, California. ; 2004:2722-2725. Kahn LE, Rymer WZ, Reinkensmeyer DJ: Adaptive assistance for guided force training in chronic stroke: September 1-5; San Francisco, California. ; 2004:2722-2725.
30.
go back to reference Wool RN, Siegel D, Fine PR: Task performance in spinal cord injury: effects of helplessness training. Arch Phys Med Rehail 1980, 61: 321-325. Wool RN, Siegel D, Fine PR: Task performance in spinal cord injury: effects of helplessness training. Arch Phys Med Rehail 1980, 61: 321-325.
31.
go back to reference Grau JW, Barstow DG, Joynes RL: Instrumental learning within the spinal cord: I. Behavioral properties. Behav Neurosci 1998, 112: 1366-1386. 10.1037/0735-7044.112.6.1366CrossRefPubMed Grau JW, Barstow DG, Joynes RL: Instrumental learning within the spinal cord: I. Behavioral properties. Behav Neurosci 1998, 112: 1366-1386. 10.1037/0735-7044.112.6.1366CrossRefPubMed
32.
go back to reference Cai LL, Fong AJ, Otoshi CK, Liang YQ, Cham JG, Zhong H, Roy RR, Edgerton VR, Burdick JW: Effects of consistency vs. variability in robotically controlled training of stepping in adult spinal mice: ; Chicago, IL. ; 2005:575-579. Cai LL, Fong AJ, Otoshi CK, Liang YQ, Cham JG, Zhong H, Roy RR, Edgerton VR, Burdick JW: Effects of consistency vs. variability in robotically controlled training of stepping in adult spinal mice: ; Chicago, IL. ; 2005:575-579.
33.
go back to reference Kaelin-Lang A, Sawaki L, Cohen LG: Role of voluntary drive in encoding an elementery motor memory. J Neurophysiol 2005, 93: 1099-1103. 10.1152/jn.00143.2004CrossRefPubMed Kaelin-Lang A, Sawaki L, Cohen LG: Role of voluntary drive in encoding an elementery motor memory. J Neurophysiol 2005, 93: 1099-1103. 10.1152/jn.00143.2004CrossRefPubMed
34.
go back to reference Lippman LG, Ress R: Consequences of error production in a perceptual-motor task. J Gen Psychol 1997, 124: 133-142.CrossRefPubMed Lippman LG, Ress R: Consequences of error production in a perceptual-motor task. J Gen Psychol 1997, 124: 133-142.CrossRefPubMed
35.
go back to reference Kurtzer I, Dizio P, Lackner JR: Task dependent motor learning. Experimental Brain Research 2003, 153: 128-132. 10.1007/s00221-003-1632-0CrossRefPubMed Kurtzer I, Dizio P, Lackner JR: Task dependent motor learning. Experimental Brain Research 2003, 153: 128-132. 10.1007/s00221-003-1632-0CrossRefPubMed
Metadata
Title
Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed
Authors
Jeremy L Emken
Raul Benitez
David J Reinkensmeyer
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2007
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-4-8

Other articles of this Issue 1/2007

Journal of NeuroEngineering and Rehabilitation 1/2007 Go to the issue