Skip to main content
Top
Published in: Critical Care 1/2020

01-12-2020 | Shock | Research

Hydrocortisone treatment is associated with a longer duration of MODS in pediatric patients with severe sepsis and immunoparalysis

Authors: Katherine E. Bline, Melissa Moore-Clingenpeel, Josey Hensley, Lisa Steele, Kristin Greathouse, Larissa Anglim, Lisa Hanson-Huber, Jyotsna Nateri, Jennifer A. Muszynski, Octavio Ramilo, Mark W. Hall

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Background

Severe critical illness-induced immune suppression, termed immunoparalysis, is associated with longer duration of organ dysfunction in septic children. mRNA studies have suggested differential benefit of hydrocortisone in septic children based on their immune phenotype, but this has not been shown using a functional readout of the immune response. This study represents a secondary analysis of a prospectively conducted immunophenotyping study of pediatric severe sepsis to test the hypothesis that hydrocortisone will be differentially associated with clinical outcomes in children with or without immunoparalysis.

Methods

Children with severe sepsis/septic shock underwent blood sampling within 48 h of sepsis onset. Immune function was measured by quantifying whole blood ex vivo LPS-induced TNFα production capacity, with a TNFα response < 200 pg/ml being diagnostic of immunoparalysis. The primary outcome measure was number of days in 14 with MODS. Univariate and multivariable negative binomial regression models were used to examine associations between hydrocortisone use, immune function, and duration of MODS.

Results

One hundred two children were enrolled (age 75 [6–160] months, 60% male). Thirty-one subjects received hydrocortisone and were more likely to be older (106 [52–184] vs 38 [3–153] months, p = 0.04), to have baseline immunocompromise (32 vs 8%, p = 0.006), to have higher PRISM III (13 [8–18] vs 7 [5–13], p = 0.0003) and vasoactive inotrope scores (20 [10–35] vs 10 [3–15], p = 0.0002) scores, and to have more MODS days (3 [1–9] vs 1 [0–3], p = 0.002). Thirty-three subjects had immunoparalysis (TNFα response 78 [52–141] vs 641 [418–1047] pg/ml, p < 0.0001). Hydrocortisone use was associated with longer duration of MODS in children with immunoparalysis after adjusting for covariables (aRR 3.7 [1.8–7.9], p = 0.0006) whereas no association with MODS duration was seen in children without immunoparalysis (aRR 1.2 [0.6–2.3], p = 0.67).

Conclusion

Hydrocortisone use was independently associated with longer duration of MODS in septic children with immunoparalysis but not in those with more robust immune function. Prospective clinical trials using a priori immunophenotyping are needed to understand optimal hydrocortisone strategies in this population.
Literature
1.
go back to reference Watson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC. The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med. 2003;167(5):695–701.CrossRef Watson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC. The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med. 2003;167(5):695–701.CrossRef
2.
go back to reference Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis*. Pediatr Crit Care Med. 2013;14(7):686–93.CrossRef Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis*. Pediatr Crit Care Med. 2013;14(7):686–93.CrossRef
3.
go back to reference Typpo K, Watson RS, Bennett TD, Farris RWD, Spaeder MC, Petersen NJ, et al. Outcomes of day 1 multiple organ dysfunction syndrome in the PICU. Pediatr Crit Care Med. 2019;20(10):914–22.CrossRef Typpo K, Watson RS, Bennett TD, Farris RWD, Spaeder MC, Petersen NJ, et al. Outcomes of day 1 multiple organ dysfunction syndrome in the PICU. Pediatr Crit Care Med. 2019;20(10):914–22.CrossRef
4.
go back to reference Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, et al. Surviving Sepsis Campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):e52–e106.CrossRef Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, et al. Surviving Sepsis Campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):e52–e106.CrossRef
5.
go back to reference Darmaros LF, Delgado AF, Carvalho WB. Corticosteroids in septic shock: what should the decision in pediatrics be? Rev Assoc Med Bras (1992). 2016;62(6):482–4.CrossRef Darmaros LF, Delgado AF, Carvalho WB. Corticosteroids in septic shock: what should the decision in pediatrics be? Rev Assoc Med Bras (1992). 2016;62(6):482–4.CrossRef
6.
go back to reference Davis AL, Carcillo JA, Aneja RK, Deymann AJ, Lin JC, Nguyen TC, et al. American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med 2017;45(6):1061–1093. Davis AL, Carcillo JA, Aneja RK, Deymann AJ, Lin JC, Nguyen TC, et al. American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med 2017;45(6):1061–1093.
7.
go back to reference Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med. 1998;26(4):645–50.CrossRef Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med. 1998;26(4):645–50.CrossRef
8.
go back to reference Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.CrossRef Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.CrossRef
9.
go back to reference Annane D, Briegel J, Keh D, Moreno R, Singer M, Sprung CL. Clinical equipoise remains for issues of adrenocorticotropic hormone administration, cortisol testing, and therapeutic use of hydrocortisone. Crit Care Med. 2003;31(8):2250–1 author reply 2-3.CrossRef Annane D, Briegel J, Keh D, Moreno R, Singer M, Sprung CL. Clinical equipoise remains for issues of adrenocorticotropic hormone administration, cortisol testing, and therapeutic use of hydrocortisone. Crit Care Med. 2003;31(8):2250–1 author reply 2-3.CrossRef
10.
go back to reference Cornell TT, Sun L, Hall MW, Gurney JG, Ashbrook MJ, Ohye RG, et al. Clinical implications and molecular mechanisms of immunoparalysis after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2012;143(5):1160–6 e1.CrossRef Cornell TT, Sun L, Hall MW, Gurney JG, Ashbrook MJ, Ohye RG, et al. Clinical implications and molecular mechanisms of immunoparalysis after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2012;143(5):1160–6 e1.CrossRef
11.
go back to reference Tschoeke SK, Ertel W. Immunoparalysis after multiple trauma. Injury. 2007;38(12):1346–57.CrossRef Tschoeke SK, Ertel W. Immunoparalysis after multiple trauma. Injury. 2007;38(12):1346–57.CrossRef
12.
go back to reference Manzoli TF, Troster EJ, Ferranti JF, Sales MM. Prolonged suppression of monocytic human leukocyte antigen-DR expression correlates with mortality in pediatric septic patients in a pediatric tertiary intensive care unit. J Crit Care. 2016;33:84–9.CrossRef Manzoli TF, Troster EJ, Ferranti JF, Sales MM. Prolonged suppression of monocytic human leukocyte antigen-DR expression correlates with mortality in pediatric septic patients in a pediatric tertiary intensive care unit. J Crit Care. 2016;33:84–9.CrossRef
13.
go back to reference Muszynski JA, Nofziger R, Greathouse K, Nateri J, Hanson-Huber L, Steele L, et al. Innate immune function predicts the development of nosocomial infection in critically injured children. Shock. 2014;42(4):313–21.CrossRef Muszynski JA, Nofziger R, Greathouse K, Nateri J, Hanson-Huber L, Steele L, et al. Innate immune function predicts the development of nosocomial infection in critically injured children. Shock. 2014;42(4):313–21.CrossRef
14.
go back to reference Wong HR, Atkinson SJ, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, et al. Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids. Crit Care Med. 2016;44(10):e1000–3.CrossRef Wong HR, Atkinson SJ, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, et al. Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids. Crit Care Med. 2016;44(10):e1000–3.CrossRef
15.
go back to reference Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8.CrossRef Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8.CrossRef
16.
go back to reference Hall MW, Geyer SM, Guo CY, Panoskaltsis-Mortari A, Jouvet P, Ferdinands J, et al. Innate immune function and mortality in critically ill children with influenza: a multicenter study. Crit Care Med. 2013;41(1):224–36.CrossRef Hall MW, Geyer SM, Guo CY, Panoskaltsis-Mortari A, Jouvet P, Ferdinands J, et al. Innate immune function and mortality in critically ill children with influenza: a multicenter study. Crit Care Med. 2013;41(1):224–36.CrossRef
17.
go back to reference Muszynski JA, Nofziger R, Moore-Clingenpeel M, Greathouse K, Anglim L, Steele L, et al. Early immune function and duration of organ dysfunction in critically III children with sepsis. Am J Respir Crit Care Med. 2018;198(3):361–9.CrossRef Muszynski JA, Nofziger R, Moore-Clingenpeel M, Greathouse K, Anglim L, Steele L, et al. Early immune function and duration of organ dysfunction in critically III children with sepsis. Am J Respir Crit Care Med. 2018;198(3):361–9.CrossRef
18.
go back to reference Hall MW, Knatz NL, Vetterly C, Tomarello S, Wewers MD, Volk HD, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–32.CrossRef Hall MW, Knatz NL, Vetterly C, Tomarello S, Wewers MD, Volk HD, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–32.CrossRef
19.
go back to reference Feudtner C, Christakis DA, Connell FA. Pediatric deaths attributable to complex chronic conditions: a population-based study of Washington State, 1980-1997. Pediatrics. 2000;106(1 Pt 2):205–9.PubMed Feudtner C, Christakis DA, Connell FA. Pediatric deaths attributable to complex chronic conditions: a population-based study of Washington State, 1980-1997. Pediatrics. 2000;106(1 Pt 2):205–9.PubMed
20.
go back to reference Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med. 2010;11(2):234–8.CrossRef Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med. 2010;11(2):234–8.CrossRef
21.
go back to reference Villeneuve A, Joyal JS, Proulx F, Ducruet T, Poitras N, Lacroix J. Multiple organ dysfunction syndrome in critically ill children: clinical value of two lists of diagnostic criteria. Ann Intensive Care. 2016;6(1):40.CrossRef Villeneuve A, Joyal JS, Proulx F, Ducruet T, Poitras N, Lacroix J. Multiple organ dysfunction syndrome in critically ill children: clinical value of two lists of diagnostic criteria. Ann Intensive Care. 2016;6(1):40.CrossRef
22.
go back to reference Weiss SL, Fitzgerald JC, Pappachan J, Wheeler D, Jaramillo-Bustamante JC, Salloo A, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–57.CrossRef Weiss SL, Fitzgerald JC, Pappachan J, Wheeler D, Jaramillo-Bustamante JC, Salloo A, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–57.CrossRef
23.
go back to reference Zimmerman JJ, Banks R, Berg RA, Zuppa A, Newth CJ, Wessel D, et al. Trajectory of mortality and health-related quality of life morbidity following community-acquired pediatric septic shock. Crit Care Med. 2020;48(3):329–37.CrossRef Zimmerman JJ, Banks R, Berg RA, Zuppa A, Newth CJ, Wessel D, et al. Trajectory of mortality and health-related quality of life morbidity following community-acquired pediatric septic shock. Crit Care Med. 2020;48(3):329–37.CrossRef
24.
go back to reference Sterling SA, Miller WR, Pryor J, Puskarich MA, Jones AE. The impact of timing of antibiotics on outcomes in severe sepsis and septic shock: a systematic review and meta-analysis. Crit Care Med. 2015;43(9):1907–15.CrossRef Sterling SA, Miller WR, Pryor J, Puskarich MA, Jones AE. The impact of timing of antibiotics on outcomes in severe sepsis and septic shock: a systematic review and meta-analysis. Crit Care Med. 2015;43(9):1907–15.CrossRef
25.
go back to reference de Oliveira CF, de Oliveira DS, Gottschald AF, Moura JD, Costa GA, Ventura AC, et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 2008;34(6):1065–75.CrossRef de Oliveira CF, de Oliveira DS, Gottschald AF, Moura JD, Costa GA, Ventura AC, et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 2008;34(6):1065–75.CrossRef
26.
go back to reference Annane D, Bellissant E, Bollaert PE, Briegel J, Keh D, Kupfer Y. Corticosteroids for severe sepsis and septic shock: a systematic review and meta-analysis. BMJ. 2004;329(7464):480.CrossRef Annane D, Bellissant E, Bollaert PE, Briegel J, Keh D, Kupfer Y. Corticosteroids for severe sepsis and septic shock: a systematic review and meta-analysis. BMJ. 2004;329(7464):480.CrossRef
27.
go back to reference Nichols B, Kubis S, Hewlett J, Yehya N, Srinivasan V. Hydrocortisone therapy in catecholamine-resistant pediatric septic shock: a pragmatic analysis of clinician practice and association with outcomes. Pediatr Crit Care Med. 2017;18(9):e406–e14.CrossRef Nichols B, Kubis S, Hewlett J, Yehya N, Srinivasan V. Hydrocortisone therapy in catecholamine-resistant pediatric septic shock: a pragmatic analysis of clinician practice and association with outcomes. Pediatr Crit Care Med. 2017;18(9):e406–e14.CrossRef
28.
go back to reference Markovitz BP, Goodman DM, Watson RS, Bertoch D, Zimmerman J. A retrospective cohort study of prognostic factors associated with outcome in pediatric severe sepsis: what is the role of steroids? Pediatr Crit Care Med. 2005;6(3):270–4.CrossRef Markovitz BP, Goodman DM, Watson RS, Bertoch D, Zimmerman J. A retrospective cohort study of prognostic factors associated with outcome in pediatric severe sepsis: what is the role of steroids? Pediatr Crit Care Med. 2005;6(3):270–4.CrossRef
29.
go back to reference Zimmerman JJ, Donaldson A, Barker RM, Meert KL, Harrison R, Carcillo JA, et al. Real-time free cortisol quantification among critically ill children. Pediatr Crit Care Med. 2011;12(5):525–31.CrossRef Zimmerman JJ, Donaldson A, Barker RM, Meert KL, Harrison R, Carcillo JA, et al. Real-time free cortisol quantification among critically ill children. Pediatr Crit Care Med. 2011;12(5):525–31.CrossRef
30.
go back to reference Wong HR, Weiss SL, Giuliano JS Jr, Wainwright MS, Cvijanovich NZ, Thomas NJ, et al. The temporal version of the pediatric sepsis biomarker risk model. PLoS One. 2014;9(3):e92121.CrossRef Wong HR, Weiss SL, Giuliano JS Jr, Wainwright MS, Cvijanovich NZ, Thomas NJ, et al. The temporal version of the pediatric sepsis biomarker risk model. PLoS One. 2014;9(3):e92121.CrossRef
31.
go back to reference Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med. 2015;191(3):309–15.CrossRef Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med. 2015;191(3):309–15.CrossRef
32.
go back to reference Srouji LS, Moore-Clingenpeel M, Hensley J, Steele L, Greathouse K, Anglim L, et al. Shock severity modifies associations between RBC transfusion in the first 48 hours of sepsis onset and the duration of organ dysfunction in critically ill septic children. Pediatr Crit Care Med. 2020;21(8):e475–e84.PubMed Srouji LS, Moore-Clingenpeel M, Hensley J, Steele L, Greathouse K, Anglim L, et al. Shock severity modifies associations between RBC transfusion in the first 48 hours of sepsis onset and the duration of organ dysfunction in critically ill septic children. Pediatr Crit Care Med. 2020;21(8):e475–e84.PubMed
Metadata
Title
Hydrocortisone treatment is associated with a longer duration of MODS in pediatric patients with severe sepsis and immunoparalysis
Authors
Katherine E. Bline
Melissa Moore-Clingenpeel
Josey Hensley
Lisa Steele
Kristin Greathouse
Larissa Anglim
Lisa Hanson-Huber
Jyotsna Nateri
Jennifer A. Muszynski
Octavio Ramilo
Mark W. Hall
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03266-x

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue