Skip to main content
Top
Published in: Annals of Intensive Care 1/2020

Open Access 01-12-2020 | Shock | Research

A lactate-targeted resuscitation strategy may be associated with higher mortality in patients with septic shock and normal capillary refill time: a post hoc analysis of the ANDROMEDA-SHOCK study

Authors: Eduardo Kattan, Glenn Hernández, Gustavo Ospina-Tascón, Emilio Daniel Valenzuela, Jan Bakker, Ricardo Castro, The ANDROMEDA-SHOCK Study Investigators and the Latin America Intensive Care Network (LIVEN)

Published in: Annals of Intensive Care | Issue 1/2020

Login to get access

Abstract

Background

Capillary refill time (CRT) may improve more rapidly than lactate in response to increments in systemic flow. Therefore, it can be assessed more frequently during septic shock (SS) resuscitation. Hyperlactatemia, in contrast, exhibits a slower recovery in SS survivors, probably explained by the delayed resolution of non-hypoperfusion-related sources. Thus, targeting lactate normalization may be associated with impaired outcomes. The ANDROMEDA-SHOCK trial compared CRT- versus lactate-targeted resuscitation in early SS. CRT-targeted resuscitation associated with lower mortality and organ dysfunction; mechanisms were not investigated. CRT was assessed every 30 min and lactate every 2 h during the 8-h intervention period, allowing a first comparison between groups at 2 h (T2). Our primary aim was to determine if SS patients evolving with normal CRT at T2 after randomization (T0) exhibited a higher mortality and organ dysfunction when allocated to the LT arm than when randomized to the CRT arm. Our secondary aim was to determine if those patients with normal CRT at T2 had received more therapeutic interventions when randomized to the LT arm. To address these issues, we performed a post hoc analysis of the ANDROMEDA-SHOCK dataset.

Results

Patients randomized to the lactate arm at T0, evolving with normal CRT at T2 exhibited significantly higher mortality than patients with normal CRT at T2 initially allocated to CRT (40 vs 23%, p = 0.009). These results replicated at T8 and T24. LT arm received significantly more resuscitative interventions (fluid boluses: 1000[500–2000] vs. 500[0–1500], p = 0.004; norepinephrine test in previously hypertensive patients: 43 (35) vs. 19 (19), p = 0.001; and inodilators: 16 (13) vs. 3 (3), p = 0.003). A multivariate logistic regression of patients with normal CRT at T2, including APACHE-II, baseline lactate, cumulative fluids administered since emergency admission, source of infection, and randomization group) confirmed that allocation to LT group was a statistically significant determinant of 28-day mortality (OR 3.3; 95%CI[1.5–7.1]); p = 0.003).

Conclusions

Septic shock patients with normal CRT at baseline received more therapeutic interventions and presented more organ dysfunction when allocated to the lactate group. This could associate with worse outcomes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hernandez G, Ospina-Tascon G, Petri Damiani L, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock The ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA. 2019;321:654–64.CrossRef Hernandez G, Ospina-Tascon G, Petri Damiani L, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock The ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA. 2019;321:654–64.CrossRef
2.
go back to reference Zampieri FG, Damiani LP, Bakker J, Ospina-Tascón GA, Castro R, Cavalcanti AB, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: a bayesian reanalysis of the ANDROMEDA-SHOCK Trial. Am J Respir Crit Care Med. 2019. https://doi.org/10.1164/rccm.201905-0968OC.CrossRef Zampieri FG, Damiani LP, Bakker J, Ospina-Tascón GA, Castro R, Cavalcanti AB, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: a bayesian reanalysis of the ANDROMEDA-SHOCK Trial. Am J Respir Crit Care Med. 2019. https://​doi.​org/​10.​1164/​rccm.​201905-0968OC.CrossRef
3.
go back to reference Hernandez G, Pedreros C, Veas E, Bruhn A, Romero C, Rovegno M, et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation a clinical-physiologic study. J Crit Care. 2012;27:283–8.CrossRef Hernandez G, Pedreros C, Veas E, Bruhn A, Romero C, Rovegno M, et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation a clinical-physiologic study. J Crit Care. 2012;27:283–8.CrossRef
4.
go back to reference Lara B, Enberg L, Ortega M, Leon P, Kripper C, Aguilera P, et al. Capillary refill time during fluid resuscitation in patients with sepsis-related hyperlactatemia at the emergency department is related to mortality. PLoS ONE. 2017;12:e0188548.CrossRef Lara B, Enberg L, Ortega M, Leon P, Kripper C, Aguilera P, et al. Capillary refill time during fluid resuscitation in patients with sepsis-related hyperlactatemia at the emergency department is related to mortality. PLoS ONE. 2017;12:e0188548.CrossRef
5.
go back to reference Alegría L, Vera M, Dreyse J, Castro R, Carpio D, Henriquez C, et al. A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study. Ann Intensive Care. 2017;7:29.CrossRef Alegría L, Vera M, Dreyse J, Castro R, Carpio D, Henriquez C, et al. A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study. Ann Intensive Care. 2017;7:29.CrossRef
6.
go back to reference JacquetLagrèze M, Bouhamri N, Portran P, Schweizer R, Baudin F, Lilot M, et al. Capillary refill time variation induced by passive leg raising predicts capillary refill time response to volume expansion. Crit Care. 2019;23:281.CrossRef JacquetLagrèze M, Bouhamri N, Portran P, Schweizer R, Baudin F, Lilot M, et al. Capillary refill time variation induced by passive leg raising predicts capillary refill time response to volume expansion. Crit Care. 2019;23:281.CrossRef
7.
go back to reference Hernandez G, Luengo C, Bruhn A, Kattan E, Friedman G, OspinaTascon G, et al. When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring. Ann Intensive Care. 2014;4:30.CrossRef Hernandez G, Luengo C, Bruhn A, Kattan E, Friedman G, OspinaTascon G, et al. When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring. Ann Intensive Care. 2014;4:30.CrossRef
8.
go back to reference Bakker J, de Backer D, Hernandez G. Lactate-guided resuscitation saves lives: we are not sure. Intensive Care Med. 2016;42:472–4.CrossRef Bakker J, de Backer D, Hernandez G. Lactate-guided resuscitation saves lives: we are not sure. Intensive Care Med. 2016;42:472–4.CrossRef
9.
go back to reference van Genderen ME, Engels N, van der Valk RJP, Lima A, Klijn E, Bakker J, et al. Early peripheral perfusion–guided fluid therapy in patients with septic shock. Am J Respir Crit Care Med. 2015;191:477–80.CrossRef van Genderen ME, Engels N, van der Valk RJP, Lima A, Klijn E, Bakker J, et al. Early peripheral perfusion–guided fluid therapy in patients with septic shock. Am J Respir Crit Care Med. 2015;191:477–80.CrossRef
10.
go back to reference Hernández G, Cavalcanti AB, Ospina-Tascón G, Zampieri FG, Dubin A, Hurtado FJ, et al. Early goal-directed therapy using a physiological holistic view: the ANDROMEDA-SHOCK—a randomized controlled trial. Ann Intensive Care. 2018;8:52.CrossRef Hernández G, Cavalcanti AB, Ospina-Tascón G, Zampieri FG, Dubin A, Hurtado FJ, et al. Early goal-directed therapy using a physiological holistic view: the ANDROMEDA-SHOCK—a randomized controlled trial. Ann Intensive Care. 2018;8:52.CrossRef
11.
go back to reference Hernández G, Cavalcanti AB, Ospina-Tascón G, Dubin A, Hurtado FJ, Damiani LP, et al. Statistical analysis plan for early goal-directed therapy using a physiological holistic view–The andromeda-shock: a randomized controlled trial. Rev Bras Ter Intensiva. 2018;30:253–63.PubMedPubMedCentral Hernández G, Cavalcanti AB, Ospina-Tascón G, Dubin A, Hurtado FJ, Damiani LP, et al. Statistical analysis plan for early goal-directed therapy using a physiological holistic view–The andromeda-shock: a randomized controlled trial. Rev Bras Ter Intensiva. 2018;30:253–63.PubMedPubMedCentral
12.
go back to reference Hernandez G, Bellomo R, Bakker J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019;45:82–5.CrossRef Hernandez G, Bellomo R, Bakker J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019;45:82–5.CrossRef
13.
go back to reference Levy B, Perez P, Gibot S, Gerard A. Increased muscle-to-serum lactate gradient predicts progression towards septic shock in septic patients. Intensive Care Med. 2010;36:1703–9.CrossRef Levy B, Perez P, Gibot S, Gerard A. Increased muscle-to-serum lactate gradient predicts progression towards septic shock in septic patients. Intensive Care Med. 2010;36:1703–9.CrossRef
14.
go back to reference Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na + K + ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005;365:871–5.CrossRef Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na + K + ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005;365:871–5.CrossRef
15.
go back to reference Tapia P, Soto D, Bruhn A, Alegría L, Jarufe N, Luengo C, et al. Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion. Crit Care. 2015;19:188.CrossRef Tapia P, Soto D, Bruhn A, Alegría L, Jarufe N, Luengo C, et al. Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion. Crit Care. 2015;19:188.CrossRef
16.
go back to reference Singer M, Deustchman C, Warren Seymour C, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRef Singer M, Deustchman C, Warren Seymour C, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRef
17.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRef Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRef
18.
go back to reference Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis England. 1987;40:373–83.CrossRef Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis England. 1987;40:373–83.CrossRef
19.
go back to reference Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.CrossRef Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.CrossRef
20.
go back to reference Rhodes A, Evans L, Alhazzani W, Levy M, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552.CrossRef Rhodes A, Evans L, Alhazzani W, Levy M, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552.CrossRef
21.
go back to reference Hernandez G, Bruhn A, Castro R, Regueira T. The holistic view on perfusion monitoring in septic shock. Curr Opin Crit Care. 2012;18:280–6.CrossRef Hernandez G, Bruhn A, Castro R, Regueira T. The holistic view on perfusion monitoring in septic shock. Curr Opin Crit Care. 2012;18:280–6.CrossRef
22.
go back to reference Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early-goal directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRef Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early-goal directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRef
23.
go back to reference Li D, Wang X, Liu D. Association between elevated central venous pressure and outcomes in critically ill patients. Ann Intensive Care. 2017;7:83.CrossRef Li D, Wang X, Liu D. Association between elevated central venous pressure and outcomes in critically ill patients. Ann Intensive Care. 2017;7:83.CrossRef
24.
go back to reference Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41:1529–37.CrossRef Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41:1529–37.CrossRef
25.
go back to reference Malbrain MLNG, Chiumello D, Pelosi P, Bihari D, Innes R, Ranieri VM, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med. 2005;33:315–22.CrossRef Malbrain MLNG, Chiumello D, Pelosi P, Bihari D, Innes R, Ranieri VM, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med. 2005;33:315–22.CrossRef
26.
go back to reference Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, DeBoisblanc B, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.CrossRef Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, DeBoisblanc B, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.CrossRef
27.
go back to reference Bagshaw SM, Brophy PD, Cruz D, Ronco C. Fluid balance as a biomarker : impact of fluid overload on outcome in critically ill patients with acute kidney injury. Crit Care. 2008;12:1–3.CrossRef Bagshaw SM, Brophy PD, Cruz D, Ronco C. Fluid balance as a biomarker : impact of fluid overload on outcome in critically ill patients with acute kidney injury. Crit Care. 2008;12:1–3.CrossRef
28.
go back to reference Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.CrossRef Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.CrossRef
29.
go back to reference Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Med. 2015;41:487–94.CrossRef Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Med. 2015;41:487–94.CrossRef
30.
go back to reference Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12:1–7.CrossRef Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12:1–7.CrossRef
31.
go back to reference Malbrain MLNG, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8:66.CrossRef Malbrain MLNG, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8:66.CrossRef
32.
go back to reference Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA, Frcp C, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.CrossRef Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA, Frcp C, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.CrossRef
33.
go back to reference Asfar P, Meziani F, Hamel J-F, Grelon F, Megarbane B, Anguel N, et al. High versus Low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRef Asfar P, Meziani F, Hamel J-F, Grelon F, Megarbane B, Anguel N, et al. High versus Low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRef
34.
go back to reference Lesur O, Delile E, Asfar P, Radermacher P. Hemodynamic support in the early phase of septic shock: a review of challenges and unanswered questions. Ann Intensive Care. Springer International Publishing; 2018;8. Lesur O, Delile E, Asfar P, Radermacher P. Hemodynamic support in the early phase of septic shock: a review of challenges and unanswered questions. Ann Intensive Care. Springer International Publishing; 2018;8.
35.
go back to reference Valenzuela Espinoza ED, Welsh S, Dubin A. Lack of agreement between different observers and methods in the measurement of capillary refill time in healthy volunteers: an observational study. Rev Bras Ter Intensiva. 2014;26:269–76. Valenzuela Espinoza ED, Welsh S, Dubin A. Lack of agreement between different observers and methods in the measurement of capillary refill time in healthy volunteers: an observational study. Rev Bras Ter Intensiva. 2014;26:269–76.
36.
go back to reference Shinozaki M, Nakada TA, Kawaguchi R, Yoshimura Y, Nakaguchi T, Haneishi H, et al. Feedback function for capillary refilling time measurement device. Crit Care. 2019;23:295.CrossRef Shinozaki M, Nakada TA, Kawaguchi R, Yoshimura Y, Nakaguchi T, Haneishi H, et al. Feedback function for capillary refilling time measurement device. Crit Care. 2019;23:295.CrossRef
37.
go back to reference Kawaguchi R, Nakada TA, Oshima T, Shinozaki M, Nakaguchi T, Haneishi H, et al. Optimal pressing strength and time for capillary refilling time. Crit Care. 2019;23:23–5.CrossRef Kawaguchi R, Nakada TA, Oshima T, Shinozaki M, Nakaguchi T, Haneishi H, et al. Optimal pressing strength and time for capillary refilling time. Crit Care. 2019;23:23–5.CrossRef
Metadata
Title
A lactate-targeted resuscitation strategy may be associated with higher mortality in patients with septic shock and normal capillary refill time: a post hoc analysis of the ANDROMEDA-SHOCK study
Authors
Eduardo Kattan
Glenn Hernández
Gustavo Ospina-Tascón
Emilio Daniel Valenzuela
Jan Bakker
Ricardo Castro
The ANDROMEDA-SHOCK Study Investigators and the Latin America Intensive Care Network (LIVEN)
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2020
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-020-00732-1

Other articles of this Issue 1/2020

Annals of Intensive Care 1/2020 Go to the issue