Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2021

Open Access 01-12-2021 | Severe Acute Respiratory Syndrome Coronavirus | Technical advance

Prone during pandemic: development and implementation of a quality-based protocol for proning severe COVID-19 hypoxic lung failure patients in situationally or historically low resource hospitals

Authors: Alfredo J. Astua, Eli K. Michaels, Andrew J. Michaels

Published in: BMC Pulmonary Medicine | Issue 1/2021

Login to get access

Abstract

Background

Intermittent Prone Positioning (IPP) for Acute Respiratory Distress Syndrome (ARDS) decreases mortality. We present a program for IPP using expedient materials for settings of significant limitations in both overwhelmed established ICUs and particularly in low- and middle-income countries (LMICs) treating ARDS due to COVID-19 caused by SARS CoV-2.

Methods

The proning program evolved based on the principles of High Reliability Organizations (HROs) and Crew Resource Management (CRM). Patients with severe ARDS [PaO2:FiO2 ratio (PFr) ≤ 150 on FiO2 ≥ 0.6 and PEEP ≥ 5 cm H2O] received IPP. Patients were placed prone 16 h each day. When PFr was ≥ 200 for > 8 h supine IPP ceased. IPP used available materials without requiring additional work from the bedside team. Changes in PFr, PaCO2, and the SaO2:FiO2 ratio (SaFr) positionally were evaluated using t-statistics and ANOVA with Bonferroni correction (p < 0.017).

Results

Between 14APR2020 and 09MAY2020, at the peak of deaths in New York, there were 202 IPPs in 29 patients. Patients were 58.5 ± 1.7 years of age (37, 73), 76% male and had a body mass index (BMI) of 27.8 ± 0.8 (21, 38). Pressor agents were used in 76% and 17% received dialysis. The PFr prior to IPP was 107.5 ± 5.6 and 1 h after IPP was 155.7 ± 11.2 (p < 0.001 compared to pre-prone). PFr after the patients were placed supine was 131.5 ± 9.1 (p = 0.02). Pre-prone PaCO2 was 60.0 ± 2.5 and the 1-h post-prone PaCO2 was 67.2 ± 3.1 (p = 0.02). Supine PaCO2 after IPP was 60.4 ± 3.4 (p = 0.90). The SaFr prior to IPP was 121.3 ± 4.2 and the SaFr 1 h after positioning was 131.5 ± 5.1 (p = 0.03). The post-IPP supine SaFr was 139.7 ± 5.9 (p < 0.001). With ANOVA and Bonferroni correction there were statistically significant changes in PFr (p < 0.001) and SaFr (p < 0.001) and no significant changes in PaCO2 over the four time points measured. Using regression coefficients, the SaFrs predicted by PFrs of 150 and 200 at baseline are 133.2 and 147.3, respectively.

Conclusions

An IPP program for patients with COVID-19 ARDS can be instituted rapidly, safely, and effectively during an overwhelming mass casualty scenario. This approach may be equally applicable in both traditionally austere environments in LMICs and in otherwise capable centers facing situational resource limitations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345(8):568–73.CrossRef Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345(8):568–73.CrossRef
2.
go back to reference Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRef Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRef
5.
go back to reference Xuefeng Zang, Qian Wang, Hua Zhou, et al. and COVID-19 Early Prone Position Study Group: Efficacy of early prone position for COVID-19 patients with severe hypoxia: a single-center prospective cohort study. Intensive Care Med. 2020; 46(10): 1927–29. doi: https://doi.org/10.1007/s00134-020-06182-4 Xuefeng Zang, Qian Wang, Hua Zhou, et al. and COVID-19 Early Prone Position Study Group: Efficacy of early prone position for COVID-19 patients with severe hypoxia: a single-center prospective cohort study. Intensive Care Med. 2020; 46(10): 1927–29. doi: https://​doi.​org/​10.​1007/​s00134-020-06182-4
6.
go back to reference Hines S, Luna K, Lofthus J, Marquardt M, Stelmokas D. Becoming a high reliability organization: operational advice for hospital leaders. AHRQ Publication No. 08-0022. Rockville, MD: Agency for Healthcare Research and Quality; 2008. Hines S, Luna K, Lofthus J, Marquardt M, Stelmokas D. Becoming a high reliability organization: operational advice for hospital leaders. AHRQ Publication No. 08-0022. Rockville, MD: Agency for Healthcare Research and Quality; 2008.
7.
go back to reference Haerkens MH, Jenkins DH, van der Hoeven JG. Crew resource management in the ICU: the need for culture change. Ann Intensive Care. 2012;2(1):39.CrossRef Haerkens MH, Jenkins DH, van der Hoeven JG. Crew resource management in the ICU: the need for culture change. Ann Intensive Care. 2012;2(1):39.CrossRef
9.
go back to reference Michaels AJ, Wanek SM, Dreifuss BA, et al.: A protocolized approach to pulmonary failure and the role of intermittent prone positioning. J Trauma. 2002;52(6):1037–47; discussion 1047 Michaels AJ, Wanek SM, Dreifuss BA, et al.: A protocolized approach to pulmonary failure and the role of intermittent prone positioning. J Trauma. 2002;52(6):1037–47; discussion 1047
Metadata
Title
Prone during pandemic: development and implementation of a quality-based protocol for proning severe COVID-19 hypoxic lung failure patients in situationally or historically low resource hospitals
Authors
Alfredo J. Astua
Eli K. Michaels
Andrew J. Michaels
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2021
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-021-01401-0

Other articles of this Issue 1/2021

BMC Pulmonary Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.