Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2023

Open Access 01-12-2023 | Septicemia | Research

Stress granule activation attenuates lipopolysaccharide-induced cardiomyocyte dysfunction

Authors: Yaqiao Wang, Runmin Liu, Kehan Wu, Gaowei Yang, Yusheng Wang, Hao Wang, Tao Rui

Published in: BMC Cardiovascular Disorders | Issue 1/2023

Login to get access

Abstract

Background

Sepsis is the leading cause of death in intensive care units. Sepsis-induced myocardial dysfunction, one of the most serious complications of sepsis, is associated with higher mortality rates. As the pathogenesis of sepsis-induced cardiomyopathy has not been fully elucidated, there is no specific therapeutic approach. Stress granules (SG) are cytoplasmic membrane-less compartments that form in response to cellular stress and play important roles in various cell signaling pathways. The role of SG in sepsis-induced myocardial dysfunction has not been determined. Therefore, this study aimed to determine the effects of SG activation in septic cardiomyocytes (CMs).

Methods

Neonatal CMs were treated with lipopolysaccharide (LPS). SG activation was visualized by immunofluorescence staining to detect the co-localization of GTPase-activating protein SH3 domain binding protein 1 (G3BP1) and T cell-restricted intracellular antigen 1 (TIA-1). Eukaryotic translation initiation factor alpha (eIF2α) phosphorylation, an indicator of SG formation, was assessed by western blotting. Tumor necrosis factor alpha (TNF-α) production was assessed by PCR and enzyme-linked immunosorbent assays. CMs function was evaluated by intracellular cyclic adenosine monophosphate (cAMP) levels in response to dobutamine. Pharmacological inhibition (ISRIB), a G3BP1 CRISPR activation plasmid, and a G3BP1 KO plasmid were employed to modulate SG activation. The fluorescence intensity of JC-1 was used to evaluate mitochondrial membrane potential.

Results

LPS challenge in CMs induced SG activation and resulted in eIF2α phosphorylation, increased TNF-α production, and decreased intracellular cAMP in response to dobutamine. The pharmacological inhibition of SG (ISRIB) increased TNF-α expression and decreased intracellular cAMP levels in CMs treated with LPS. The overexpression of G3BP1 increased SG activation, attenuated the LPS-induced increase in TNF-α expression, and improved CMs contractility (as evidenced by increased intracellular cAMP). Furthermore, SG prevented LPS-induced mitochondrial membrane potential dissipation in CMs.

Conclusion

SG formation plays a protective role in CMs function in sepsis and is a candidate therapeutic target.
Appendix
Available only for authorised users
Literature
1.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al. The Third International Consensus Definitions for Sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al. The Third International Consensus Definitions for Sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef
2.
go back to reference Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, et al. Assessment of Clinical Criteria for Sepsis: for the Third International Consensus Definitions for Sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):762–74.PubMedPubMedCentralCrossRef Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, et al. Assessment of Clinical Criteria for Sepsis: for the Third International Consensus Definitions for Sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):762–74.PubMedPubMedCentralCrossRef
3.
go back to reference L’Heureux M, Sternberg M, Brath L, Turlington J, Kashiouris MG. Sepsis-Induced Cardiomyopathy: a Comprehensive Review. Curr Cardiol Rep. 2020;22(5):35.PubMedPubMedCentralCrossRef L’Heureux M, Sternberg M, Brath L, Turlington J, Kashiouris MG. Sepsis-Induced Cardiomyopathy: a Comprehensive Review. Curr Cardiol Rep. 2020;22(5):35.PubMedPubMedCentralCrossRef
4.
5.
go back to reference Beesley SJ, Weber G, Sarge T, Nikravan S, Grissom CK, Lanspa MJ, Shahul S, Brown SM. Septic cardiomyopathy. Crit Care Med. 2018;46(4):625–34.PubMedCrossRef Beesley SJ, Weber G, Sarge T, Nikravan S, Grissom CK, Lanspa MJ, Shahul S, Brown SM. Septic cardiomyopathy. Crit Care Med. 2018;46(4):625–34.PubMedCrossRef
7.
go back to reference van Leeuwen W, Rabouille C. Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells. Traffic. 2019;20(9):623–38.PubMedPubMedCentral van Leeuwen W, Rabouille C. Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells. Traffic. 2019;20(9):623–38.PubMedPubMedCentral
9.
go back to reference Anderson P, Kedersha N. Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008;33(3):141–50.PubMedCrossRef Anderson P, Kedersha N. Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008;33(3):141–50.PubMedCrossRef
11.
go back to reference Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci. 2013;38(10):494–506.PubMedCrossRef Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci. 2013;38(10):494–506.PubMedCrossRef
13.
go back to reference Dobra I, Pankivskyi S, Samsonova A, Pastre D, Hamon L. Relation between stress granules and cytoplasmic protein aggregates linked to neurodegenerative Diseases. Curr Neurol Neurosci Rep. 2018;18(12):107.PubMedCrossRef Dobra I, Pankivskyi S, Samsonova A, Pastre D, Hamon L. Relation between stress granules and cytoplasmic protein aggregates linked to neurodegenerative Diseases. Curr Neurol Neurosci Rep. 2018;18(12):107.PubMedCrossRef
14.
go back to reference Mateju D, Eichenberger B, Voigt F, Eglinger J, Roth G, Chao JA. Single-molecule imaging reveals translation of mRNAs localized to stress granules. Cell. 2020;183(7):1801–1812e1813.PubMedCrossRef Mateju D, Eichenberger B, Voigt F, Eglinger J, Roth G, Chao JA. Single-molecule imaging reveals translation of mRNAs localized to stress granules. Cell. 2020;183(7):1801–1812e1813.PubMedCrossRef
17.
go back to reference Kuo CT, You GT, Jian YJ, Chen TS, Siao YC, Hsu AL, Ching TT. AMPK-mediated formation of stress granules is required for dietary restriction-induced longevity in Caenorhabditis elegans. Aging Cell. 2020;19(6):e13157.PubMedPubMedCentralCrossRef Kuo CT, You GT, Jian YJ, Chen TS, Siao YC, Hsu AL, Ching TT. AMPK-mediated formation of stress granules is required for dietary restriction-induced longevity in Caenorhabditis elegans. Aging Cell. 2020;19(6):e13157.PubMedPubMedCentralCrossRef
18.
go back to reference Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, Fujii M. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol. 2013;33(4):815–29.PubMedPubMedCentralCrossRef Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, Fujii M. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol. 2013;33(4):815–29.PubMedPubMedCentralCrossRef
19.
go back to reference Rui T, Zhang J, Xu X, Yao Y, Kao R, Martin CM. Reduction in IL-33 expression exaggerates ischaemia/reperfusion-induced myocardial injury in mice with diabetes mellitus. Cardiovasc Res. 2012;94(2):370–8.PubMedCrossRef Rui T, Zhang J, Xu X, Yao Y, Kao R, Martin CM. Reduction in IL-33 expression exaggerates ischaemia/reperfusion-induced myocardial injury in mice with diabetes mellitus. Cardiovasc Res. 2012;94(2):370–8.PubMedCrossRef
20.
go back to reference Herman AB, Silva Afonso M, Kelemen SE, Ray M, Vrakas CN, Burke AC, Scalia RG, Moore K, Autieri MV. Regulation of stress granule formation by inflammation, Vascular Injury, and atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39(10):2014–27.PubMedPubMedCentralCrossRef Herman AB, Silva Afonso M, Kelemen SE, Ray M, Vrakas CN, Burke AC, Scalia RG, Moore K, Autieri MV. Regulation of stress granule formation by inflammation, Vascular Injury, and atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39(10):2014–27.PubMedPubMedCentralCrossRef
21.
go back to reference Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U, Yang Z, Wu J, Li Y, Pan Q, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020;181(2):325–345e328.PubMedPubMedCentralCrossRef Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U, Yang Z, Wu J, Li Y, Pan Q, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020;181(2):325–345e328.PubMedPubMedCentralCrossRef
22.
go back to reference Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021, 10(4). Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021, 10(4).
23.
go back to reference Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, Gallagher CM, Ang KK, Wilson C, et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife. 2013;2:e00498.PubMedPubMedCentralCrossRef Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, Gallagher CM, Ang KK, Wilson C, et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife. 2013;2:e00498.PubMedPubMedCentralCrossRef
24.
go back to reference Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. Elife 2015, 4. Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. Elife 2015, 4.
25.
go back to reference Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72(3):557–81.PubMedCrossRef Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72(3):557–81.PubMedCrossRef
26.
go back to reference Sattler K, El-Battrawy I, Cyganek L, Lang S, Lan H, Li X, Zhao Z, Utikal J, Wieland T, Borggrefe M, et al. TRPV1 activation and internalization is part of the LPS-induced inflammation in human iPSC-derived cardiomyocytes. Sci Rep. 2021;11(1):14689.PubMedPubMedCentralCrossRef Sattler K, El-Battrawy I, Cyganek L, Lang S, Lan H, Li X, Zhao Z, Utikal J, Wieland T, Borggrefe M, et al. TRPV1 activation and internalization is part of the LPS-induced inflammation in human iPSC-derived cardiomyocytes. Sci Rep. 2021;11(1):14689.PubMedPubMedCentralCrossRef
27.
go back to reference Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol. 2003;160(6):823–31.PubMedPubMedCentralCrossRef Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol. 2003;160(6):823–31.PubMedPubMedCentralCrossRef
28.
go back to reference Lin Y, Xu Y, Zhang Z. Sepsis-Induced Myocardial Dysfunction (SIMD): the pathophysiological mechanisms and therapeutic strategies targeting Mitochondria. Inflammation. 2020;43(4):1184–200.PubMedCrossRef Lin Y, Xu Y, Zhang Z. Sepsis-Induced Myocardial Dysfunction (SIMD): the pathophysiological mechanisms and therapeutic strategies targeting Mitochondria. Inflammation. 2020;43(4):1184–200.PubMedCrossRef
29.
go back to reference Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R. ATPase-Modulated stress granules contain a diverse proteome and substructure. Cell. 2016;164(3):487–98.PubMedPubMedCentralCrossRef Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R. ATPase-Modulated stress granules contain a diverse proteome and substructure. Cell. 2016;164(3):487–98.PubMedPubMedCentralCrossRef
30.
go back to reference Guo Y, Hinchman MM, Lewandrowski M, Cross ST, Sutherland DM, Welsh OL, Dermody TS, Parker JSL. The multi-functional reovirus σ3 protein is a virulence factor that suppresses stress granule formation and is associated with myocardial injury. PLoS Pathog. 2021;17(7):e1009494.PubMedPubMedCentralCrossRef Guo Y, Hinchman MM, Lewandrowski M, Cross ST, Sutherland DM, Welsh OL, Dermody TS, Parker JSL. The multi-functional reovirus σ3 protein is a virulence factor that suppresses stress granule formation and is associated with myocardial injury. PLoS Pathog. 2021;17(7):e1009494.PubMedPubMedCentralCrossRef
31.
go back to reference Samir P, Kesavardhana S, Patmore DM, Gingras S, Malireddi RKS, Karki R, Guy CS, Briard B, Place DE, Bhattacharya A, et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature. 2019;573(7775):590–4.PubMedPubMedCentralCrossRef Samir P, Kesavardhana S, Patmore DM, Gingras S, Malireddi RKS, Karki R, Guy CS, Briard B, Place DE, Bhattacharya A, et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature. 2019;573(7775):590–4.PubMedPubMedCentralCrossRef
32.
go back to reference He M, Yang Z, Abdellatif M, Sayed D. GTPase activating protein (Sh3 domain) binding protein 1 regulates the Processing of MicroRNA-1 during Cardiac Hypertrophy. PLoS ONE. 2015;10(12):e0145112.PubMedPubMedCentralCrossRef He M, Yang Z, Abdellatif M, Sayed D. GTPase activating protein (Sh3 domain) binding protein 1 regulates the Processing of MicroRNA-1 during Cardiac Hypertrophy. PLoS ONE. 2015;10(12):e0145112.PubMedPubMedCentralCrossRef
33.
go back to reference Wu AH. Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med. 2001;27(6):959–61.PubMedCrossRef Wu AH. Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med. 2001;27(6):959–61.PubMedCrossRef
35.
go back to reference Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis. 2019;1865(4):759–73.PubMedCrossRef Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis. 2019;1865(4):759–73.PubMedCrossRef
36.
go back to reference Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med. 2018;50(2):121–7.PubMedCrossRef Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med. 2018;50(2):121–7.PubMedCrossRef
38.
go back to reference Li Q, Leng K, Liu Y, Sun H, Gao J, Ren Q, Zhou T, Dong J, Xia J. The impact of hyperglycaemia on PKM2-mediated NLRP3 inflammasome/stress granule signalling in macrophages and its correlation with plaque vulnerability: an in vivo and in vitro study. Metabolism. 2020;107:154231.PubMedCrossRef Li Q, Leng K, Liu Y, Sun H, Gao J, Ren Q, Zhou T, Dong J, Xia J. The impact of hyperglycaemia on PKM2-mediated NLRP3 inflammasome/stress granule signalling in macrophages and its correlation with plaque vulnerability: an in vivo and in vitro study. Metabolism. 2020;107:154231.PubMedCrossRef
39.
go back to reference Dong G, Liang F, Sun B, Wang C, Liu Y, Guan X, Yang B, Xiu C, Yang N, Liu F, et al. Presence and function of stress granules in atrial fibrillation. PLoS ONE. 2019;14(4):e0213769.PubMedPubMedCentralCrossRef Dong G, Liang F, Sun B, Wang C, Liu Y, Guan X, Yang B, Xiu C, Yang N, Liu F, et al. Presence and function of stress granules in atrial fibrillation. PLoS ONE. 2019;14(4):e0213769.PubMedPubMedCentralCrossRef
40.
go back to reference Schneider JW, Oommen S, Qureshi MY, Goetsch SC, Pease DR, Sundsbak RS, Guo W, Sun M, Sun H, Kuroyanagi H, et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat Med. 2020;26(11):1788–800.PubMedPubMedCentralCrossRef Schneider JW, Oommen S, Qureshi MY, Goetsch SC, Pease DR, Sundsbak RS, Guo W, Sun M, Sun H, Kuroyanagi H, et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat Med. 2020;26(11):1788–800.PubMedPubMedCentralCrossRef
41.
42.
go back to reference Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R. The stress granule transcriptome reveals principles of mRNA Accumulation in stress granules. Mol Cell. 2017;68(4):808–820e805.PubMedPubMedCentralCrossRef Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R. The stress granule transcriptome reveals principles of mRNA Accumulation in stress granules. Mol Cell. 2017;68(4):808–820e805.PubMedPubMedCentralCrossRef
43.
go back to reference Buchan JR, Yoon JH, Parker R. Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci. 2011;124(Pt 2):228–39.PubMedCrossRef Buchan JR, Yoon JH, Parker R. Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci. 2011;124(Pt 2):228–39.PubMedCrossRef
44.
go back to reference Riggs CL, Kedersha N, Ivanov P, Anderson P. Mammalian stress granules and P bodies at a glance. J Cell Sci 2020, 133(16). Riggs CL, Kedersha N, Ivanov P, Anderson P. Mammalian stress granules and P bodies at a glance. J Cell Sci 2020, 133(16).
45.
go back to reference Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123(6):594–604.PubMedCrossRef Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123(6):594–604.PubMedCrossRef
46.
go back to reference Weinhage T, Wirth T, Schütz P, Becker P, Lueken A, Skryabin BV, Wittkowski H, Foell D. The receptor for Advanced Glycation Endproducts (RAGE) contributes to severe Inflammatory Liver Injury in mice. Front Immunol. 2020;11:1157.PubMedPubMedCentralCrossRef Weinhage T, Wirth T, Schütz P, Becker P, Lueken A, Skryabin BV, Wittkowski H, Foell D. The receptor for Advanced Glycation Endproducts (RAGE) contributes to severe Inflammatory Liver Injury in mice. Front Immunol. 2020;11:1157.PubMedPubMedCentralCrossRef
Metadata
Title
Stress granule activation attenuates lipopolysaccharide-induced cardiomyocyte dysfunction
Authors
Yaqiao Wang
Runmin Liu
Kehan Wu
Gaowei Yang
Yusheng Wang
Hao Wang
Tao Rui
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2023
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-023-03281-0

Other articles of this Issue 1/2023

BMC Cardiovascular Disorders 1/2023 Go to the issue