Skip to main content
Top
Published in: Annals of Intensive Care 1/2023

Open Access 01-12-2023 | Septic Shock | Research

Association of pronounced elevation of NET formation and nucleosome biomarkers with mortality in patients with septic shock

Authors: Muzhda Haem Rahimi, Frank Bidar, Anne-Claire Lukaszewicz, Lorna Garnier, Léa Payen-Gay, Fabienne Venet, Guillaume Monneret

Published in: Annals of Intensive Care | Issue 1/2023

Login to get access

Abstract

Background

Understanding the mechanisms underlying immune dysregulation in sepsis is a major challenge in developing more individualized therapy, as early and persistent inflammation, as well as immunosuppression, play a significant role in pathophysiology. As part of the antimicrobial response, neutrophils can release extracellular traps (NETs) which neutralize and kill microorganisms. However, excessive NETs formation may also contribute to pathogenesis, tissue damage and organ dysfunction. Recently, a novel automated assay has been proposed for the routine measurement of nucleosomes H3.1 (fundamental units of chromatin) that are released during NETs formation. The aim of the present study was to measure nucleosome levels in 151 septic shock patients (according to sepsis-3 definition) and to determine association with mortality.

Results

The nucleosome H3.1 levels (as determined by a chemiluminescence immunoassay performed on an automated immunoanalyzer system) were markedly and significantly elevated at all-time points in septic shock patients compared to the control group. Immunological parameters indicated tremendous early inflammation (IL-6 = 1335 pg/mL at day 1–2) along with marked immunosuppression (e.g., mHLA-DR = 3853 AB/C and CD4 = 338 cell /µL at day 3–4). We found significantly positive correlation between nucleosome levels and organ failure and severity scores, IL-6 concentrations and neutrophil count. Significantly higher values (day 1–2 and 3–4) were measured in non-survivor patients (28-day mortality). This association was still significant after multivariate analysis and was more pronounced with highest concentration. Early (day 1–2) increased nucleosome levels were also independently associated with 5-day mortality. At day 6–8, persistent elevated nucleosome levels were negatively correlated to mHLA-DR values.

Conclusions

This study reports a significant elevation of nucleosome in patients during a one-week follow-up. The nucleosome levels showed correlation with neutrophil count, IL-6 and were found to be independently associated with mortality assessed at day 5 or 28. Therefore, nucleosome concentration seems to be a promising biomarker for detecting hyper-inflammatory phenotype upon a patient's admission. Additional investigations are required to evaluate the potential association between sustained elevation of nucleosome and sepsis-induced immunosuppression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet Lond Engl. 2020;395:200–11.CrossRef Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet Lond Engl. 2020;395:200–11.CrossRef
2.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRefPubMedPubMedCentral Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRefPubMedPubMedCentral
3.
go back to reference van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17:407–20.CrossRefPubMed van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17:407–20.CrossRefPubMed
4.
go back to reference Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14:121–37.CrossRefPubMed Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14:121–37.CrossRefPubMed
5.
go back to reference Torres LK, Pickkers P, van der Poll T. Sepsis-Induced Immunosuppression. Annu Rev Physiol. 2022;84:157–81.CrossRefPubMed Torres LK, Pickkers P, van der Poll T. Sepsis-Induced Immunosuppression. Annu Rev Physiol. 2022;84:157–81.CrossRefPubMed
7.
8.
go back to reference Mira JC, Gentile LF, Mathias BJ, Efron PA, Brakenridge SC, Mohr AM, et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med. 2017;45:253–62.CrossRefPubMedPubMedCentral Mira JC, Gentile LF, Mathias BJ, Efron PA, Brakenridge SC, Mohr AM, et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med. 2017;45:253–62.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC, et al. Neutrophils: New insights and open questions. Sci Immunol. 2018;3: eaat4579.CrossRefPubMed Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC, et al. Neutrophils: New insights and open questions. Sci Immunol. 2018;3: eaat4579.CrossRefPubMed
11.
go back to reference Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 2019;39:1724–38.CrossRefPubMedPubMedCentral Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 2019;39:1724–38.CrossRefPubMedPubMedCentral
12.
go back to reference Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre-Roig C. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res. 2022;118:2737–53.CrossRefPubMed Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre-Roig C. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res. 2022;118:2737–53.CrossRefPubMed
13.
go back to reference Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLOS Pathog. 2009;5: e1000639.CrossRefPubMedPubMedCentral Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLOS Pathog. 2009;5: e1000639.CrossRefPubMedPubMedCentral
14.
go back to reference Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.CrossRefPubMed Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.CrossRefPubMed
15.
go back to reference Tanner L, Bhongir RKV, Karlsson CAQ, Le S, Ljungberg JK, Andersson P, et al. Citrullination of extracellular histone H31 reduces antibacterial activity and exacerbates its proteolytic degradation. J Cyst Fibros Off J Eur Cyst Fibros Soc. 2021;20:346–55.CrossRef Tanner L, Bhongir RKV, Karlsson CAQ, Le S, Ljungberg JK, Andersson P, et al. Citrullination of extracellular histone H31 reduces antibacterial activity and exacerbates its proteolytic degradation. J Cyst Fibros Off J Eur Cyst Fibros Soc. 2021;20:346–55.CrossRef
16.
go back to reference Frangou E, Vassilopoulos D, Boletis J, Boumpas DT. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): Implications for the pathogenesis and treatment. Autoimmun Rev. 2019;18:751–60.CrossRefPubMed Frangou E, Vassilopoulos D, Boletis J, Boumpas DT. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): Implications for the pathogenesis and treatment. Autoimmun Rev. 2019;18:751–60.CrossRefPubMed
17.
go back to reference Lachowicz-Scroggins ME, Dunican EM, Charbit AR, Raymond W, Looney MR, Peters MC, et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. Am J Respir Crit Care Med. 2019;199:1076–85.CrossRefPubMedPubMedCentral Lachowicz-Scroggins ME, Dunican EM, Charbit AR, Raymond W, Looney MR, Peters MC, et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. Am J Respir Crit Care Med. 2019;199:1076–85.CrossRefPubMedPubMedCentral
18.
go back to reference Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE. 2012;7: e32366.CrossRefPubMedPubMedCentral Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE. 2012;7: e32366.CrossRefPubMedPubMedCentral
19.
go back to reference Li C, Xing Y, Zhang Y, Hua Y, Hu J, Bai Y. Neutrophil extracellular traps exacerbate ischemic brain damage. Mol Neurobiol. 2022;59:643–56.CrossRefPubMed Li C, Xing Y, Zhang Y, Hua Y, Hu J, Bai Y. Neutrophil extracellular traps exacerbate ischemic brain damage. Mol Neurobiol. 2022;59:643–56.CrossRefPubMed
20.
go back to reference Tsourouktsoglou T-D, Warnatsch A, Ioannou M, Hoving D, Wang Q, Papayannopoulos V. Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4. Cell Rep. 2020;31: 107602.CrossRefPubMed Tsourouktsoglou T-D, Warnatsch A, Ioannou M, Hoving D, Wang Q, Papayannopoulos V. Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4. Cell Rep. 2020;31: 107602.CrossRefPubMed
21.
go back to reference Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23:279–87.CrossRefPubMed Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23:279–87.CrossRefPubMed
22.
go back to reference Morimont L, Dechamps M, David C, Bouvy C, Gillot C, Haguet H, et al. NETosis and nucleosome biomarkers in septic shock and critical COVID-19 patients: an observational study. Biomolecules. 2022;12:1038.CrossRefPubMedPubMedCentral Morimont L, Dechamps M, David C, Bouvy C, Gillot C, Haguet H, et al. NETosis and nucleosome biomarkers in septic shock and critical COVID-19 patients: an observational study. Biomolecules. 2022;12:1038.CrossRefPubMedPubMedCentral
23.
go back to reference Augusto J-F, Beauvillain C, Poli C, Paolini L, Tournier I, Pignon P, et al. Clusterin Neutralizes the Inflammatory and Cytotoxic Properties of Extracellular Histones. Am J Respir Crit Care Med. 2023;23:56. Augusto J-F, Beauvillain C, Poli C, Paolini L, Tournier I, Pignon P, et al. Clusterin Neutralizes the Inflammatory and Cytotoxic Properties of Extracellular Histones. Am J Respir Crit Care Med. 2023;23:56.
24.
go back to reference Zeerleder S, Zwart B, Wuillemin WA, Aarden LA, Groeneveld ABJ, Caliezi C, et al. Elevated nucleosome levels in systemic inflammation and sepsis. Crit Care Med. 2003;31:1947–51.CrossRefPubMed Zeerleder S, Zwart B, Wuillemin WA, Aarden LA, Groeneveld ABJ, Caliezi C, et al. Elevated nucleosome levels in systemic inflammation and sepsis. Crit Care Med. 2003;31:1947–51.CrossRefPubMed
26.
go back to reference Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18:134–47.CrossRefPubMed Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18:134–47.CrossRefPubMed
28.
go back to reference Yehya N, Fazelinia H, Lawrence GG, Spruce LA, Mai MV, Worthen GS, et al. Plasma nucleosomes are associated with mortality in pediatric acute respiratory distress syndrome. Crit Care Med. 2021;49:1149–58.CrossRefPubMedPubMedCentral Yehya N, Fazelinia H, Lawrence GG, Spruce LA, Mai MV, Worthen GS, et al. Plasma nucleosomes are associated with mortality in pediatric acute respiratory distress syndrome. Crit Care Med. 2021;49:1149–58.CrossRefPubMedPubMedCentral
29.
go back to reference Yu H-C, Lu M-C. The roles of anti-citrullinated protein antibodies in the immunopathogenesis of rheumatoid arthritis. Ci Ji Yi Xue Za Zhi Tzu-Chi Med J. 2019;31:5–10. Yu H-C, Lu M-C. The roles of anti-citrullinated protein antibodies in the immunopathogenesis of rheumatoid arthritis. Ci Ji Yi Xue Za Zhi Tzu-Chi Med J. 2019;31:5–10.
30.
go back to reference Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217: e20200652.CrossRefPubMedPubMedCentral Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217: e20200652.CrossRefPubMedPubMedCentral
31.
go back to reference Xu P, Lou J-S, Ren Y, Miao C-H, Deng X. Gene expression profiling reveals the defining features of monocytes from septic patients with compensatory anti-inflammatory response syndrome. J Infect. 2012;65:380–91.CrossRefPubMed Xu P, Lou J-S, Ren Y, Miao C-H, Deng X. Gene expression profiling reveals the defining features of monocytes from septic patients with compensatory anti-inflammatory response syndrome. J Infect. 2012;65:380–91.CrossRefPubMed
32.
go back to reference Chen Q, Ye L, Jin Y, Zhang N, Lou T, Qiu Z, et al. Circulating nucleosomes as a predictor of sepsis and organ dysfunction in critically ill patients. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2012;16:e558-564. Chen Q, Ye L, Jin Y, Zhang N, Lou T, Qiu Z, et al. Circulating nucleosomes as a predictor of sepsis and organ dysfunction in critically ill patients. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2012;16:e558-564.
33.
go back to reference Mao J-Y, Zhang J-H, Cheng W, Chen J-W, Cui N. Effects of neutrophil extracellular traps in patients with septic coagulopathy and their interaction with autophagy. Front Immunol. 2021;12: 757041.CrossRefPubMedPubMedCentral Mao J-Y, Zhang J-H, Cheng W, Chen J-W, Cui N. Effects of neutrophil extracellular traps in patients with septic coagulopathy and their interaction with autophagy. Front Immunol. 2021;12: 757041.CrossRefPubMedPubMedCentral
34.
go back to reference Wildhagen KCAA, Wiewel MA, Schultz MJ, Horn J, Schrijver R, Reutelingsperger CPM, et al. Extracellular histone H3 levels are inversely correlated with antithrombin levels and platelet counts and are associated with mortality in sepsis patients. Thromb Res. 2015;136:542–7.CrossRefPubMed Wildhagen KCAA, Wiewel MA, Schultz MJ, Horn J, Schrijver R, Reutelingsperger CPM, et al. Extracellular histone H3 levels are inversely correlated with antithrombin levels and platelet counts and are associated with mortality in sepsis patients. Thromb Res. 2015;136:542–7.CrossRefPubMed
35.
go back to reference Zeerleder S, Stephan F, Emonts M, de Kleijn ED, Esmon CT, Varadi K, et al. Circulating nucleosomes and severity of illness in children suffering from meningococcal sepsis treated with protein C. Crit Care Med. 2012;40:3224–9.CrossRefPubMed Zeerleder S, Stephan F, Emonts M, de Kleijn ED, Esmon CT, Varadi K, et al. Circulating nucleosomes and severity of illness in children suffering from meningococcal sepsis treated with protein C. Crit Care Med. 2012;40:3224–9.CrossRefPubMed
37.
go back to reference Li Y, Liu Z, Liu B, Zhao T, Chong W, Wang Y, et al. Citrullinated Histone H3 – a novel target for treatment of sepsis. Surgery. 2014;156:229–34.CrossRefPubMed Li Y, Liu Z, Liu B, Zhao T, Chong W, Wang Y, et al. Citrullinated Histone H3 – a novel target for treatment of sepsis. Surgery. 2014;156:229–34.CrossRefPubMed
Metadata
Title
Association of pronounced elevation of NET formation and nucleosome biomarkers with mortality in patients with septic shock
Authors
Muzhda Haem Rahimi
Frank Bidar
Anne-Claire Lukaszewicz
Lorna Garnier
Léa Payen-Gay
Fabienne Venet
Guillaume Monneret
Publication date
01-12-2023
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2023
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-023-01204-y

Other articles of this Issue 1/2023

Annals of Intensive Care 1/2023 Go to the issue