Skip to main content
Top
Published in: BMC Geriatrics 1/2020

Open Access 01-12-2020 | Research article

Sensor-based characterization of daily walking: a new paradigm in pre-frailty/frailty assessment

Authors: Danya Pradeep Kumar, Nima Toosizadeh, Jane Mohler, Hossein Ehsani, Cassidy Mannier, Kaveh Laksari

Published in: BMC Geriatrics | Issue 1/2020

Login to get access

Abstract

Background

Frailty is a highly recognized geriatric syndrome resulting in decline in reserve across multiple physiological systems. Impaired physical function is one of the major indicators of frailty. The goal of this study was to evaluate an algorithm that discriminates between frailty groups (non-frail and pre-frail/frail) based on gait performance parameters derived from unsupervised daily physical activity (DPA).

Methods

DPA was acquired for 48 h from older adults (≥65 years) using a tri-axial accelerometer motion-sensor. Continuous bouts of walking for 20s, 30s, 40s, 50s and 60s without pauses were identified from acceleration data. These were then used to extract qualitative measures (gait variability, gait asymmetry, and gait irregularity) and quantitative measures (total continuous walking duration and maximum number of continuous steps) to characterize gait performance. Association between frailty and gait performance parameters was assessed using multinomial logistic models with frailty as the dependent variable, and gait performance parameters along with demographic parameters as independent variables.

Results

One hundred twenty-six older adults (44 non-frail, 60 pre-frail, and 22 frail, based on the Fried index) were recruited. Step- and stride-times, frequency domain gait variability, and continuous walking quantitative measures were significantly different between non-frail and pre-frail/frail groups (p < 0.05). Among the five different durations (20s, 30s, 40s, 50s and 60s), gait performance parameters extracted from 60s continuous walks provided the best frailty assessment results. Using the 60s gait performance parameters in the logistic model, pre-frail/frail group (vs. non-frail) was identified with 76.8% sensitivity and 80% specificity.

Discussion

Everyday walking characteristics were found to be associated with frailty. Along with quantitative measures of physical activity, qualitative measures are critical elements representing the early stages of frailty. In-home gait assessment offers an opportunity to screen for and monitor frailty.

Trial registration

The clinical trial was retrospectively registered on June 18th, 2013 with ClinicalTrials.gov, identifier NCT01880229.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mohler MJ, Fain MJ, Wertheimer AM, Najafi B, Nikolich-Žugich J. The frailty syndrome: clinical measurements and basic underpinnings in humans and animals. Exp Gerontol. 2014;54:6–13.PubMedCrossRef Mohler MJ, Fain MJ, Wertheimer AM, Najafi B, Nikolich-Žugich J. The frailty syndrome: clinical measurements and basic underpinnings in humans and animals. Exp Gerontol. 2014;54:6–13.PubMedCrossRef
2.
go back to reference Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol Ser A Biol Sci Med Sci. 2001;56(3):M146–57.CrossRef Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol Ser A Biol Sci Med Sci. 2001;56(3):M146–57.CrossRef
3.
go back to reference Evans WJ, Paolisso G, Abbatecola AM, Corsonello A, Bustacchini S, Strollo F, et al. Frailty and muscle metabolism dysregulation in the elderly. Biogerontology. 2010;11(5):527–36.PubMedCrossRef Evans WJ, Paolisso G, Abbatecola AM, Corsonello A, Bustacchini S, Strollo F, et al. Frailty and muscle metabolism dysregulation in the elderly. Biogerontology. 2010;11(5):527–36.PubMedCrossRef
4.
go back to reference van Kan GA, Rolland Y, Houles M, Gillette-Guyonnet S, Soto M, Vellas B. The assessment of frailty in older adults. Clin Geriatr Med. 2010;26:275–86.CrossRef van Kan GA, Rolland Y, Houles M, Gillette-Guyonnet S, Soto M, Vellas B. The assessment of frailty in older adults. Clin Geriatr Med. 2010;26:275–86.CrossRef
5.
go back to reference Abellan Van Kan G, Rolland Y, Bergman H, Morley JE, Kritchevsky SB, Vellas B. The I.A.N.A. task force on frailty assessment of older people in clinical practice. J Nutr Heal Aging. 2008;12(1):29–37.CrossRef Abellan Van Kan G, Rolland Y, Bergman H, Morley JE, Kritchevsky SB, Vellas B. The I.A.N.A. task force on frailty assessment of older people in clinical practice. J Nutr Heal Aging. 2008;12(1):29–37.CrossRef
6.
go back to reference Hausdorff JM, Edelberg HK, Mitchell SL, Goldberger AL, Wei JY. Increased gait unsteadiness in community-dwelling elderly failers. Arch Phys Med Rehabil. 1997;78(3):278–83.PubMedCrossRef Hausdorff JM, Edelberg HK, Mitchell SL, Goldberger AL, Wei JY. Increased gait unsteadiness in community-dwelling elderly failers. Arch Phys Med Rehabil. 1997;78(3):278–83.PubMedCrossRef
7.
go back to reference Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci. 2002;57(3):B115–25.PubMedCrossRef Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci. 2002;57(3):B115–25.PubMedCrossRef
8.
go back to reference Grabiner PC, Biswas ST, Grabiner MD. Age-related changes in spatial and temporal gait variables. Arch Phys Med Rehabil. 2001;82(1):31–5.PubMedCrossRef Grabiner PC, Biswas ST, Grabiner MD. Age-related changes in spatial and temporal gait variables. Arch Phys Med Rehabil. 2001;82(1):31–5.PubMedCrossRef
9.
go back to reference Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995;332(9):556–62.PubMedCrossRef Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995;332(9):556–62.PubMedCrossRef
10.
go back to reference Visser M, Deeg DJH, Lips P. Longitudinal aging study Amsterdam. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the longitudinal aging study Amsterdam. J Clin Endocrinol Metab. 2003;88(12):5766–72.PubMedCrossRef Visser M, Deeg DJH, Lips P. Longitudinal aging study Amsterdam. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the longitudinal aging study Amsterdam. J Clin Endocrinol Metab. 2003;88(12):5766–72.PubMedCrossRef
11.
go back to reference Martinikorena I, Martínez-Ramírez A, Gómez M, Lecumberri P, Casas-Herrero A, Cadore EL, et al. Gait variability related to muscle quality and muscle power output in frail nonagenarian older adults. J Am Med Dir Assoc. 2016;17(2):162–7.PubMedCrossRef Martinikorena I, Martínez-Ramírez A, Gómez M, Lecumberri P, Casas-Herrero A, Cadore EL, et al. Gait variability related to muscle quality and muscle power output in frail nonagenarian older adults. J Am Med Dir Assoc. 2016;17(2):162–7.PubMedCrossRef
12.
go back to reference Kosse NM, Vuillerme N, Hortobágyi T, Lamoth CJ. Multiple gait parameters derived from iPod accelerometry predict age-related gait changes. Gait Posture. 2016;46:112–7.PubMedCrossRef Kosse NM, Vuillerme N, Hortobágyi T, Lamoth CJ. Multiple gait parameters derived from iPod accelerometry predict age-related gait changes. Gait Posture. 2016;46:112–7.PubMedCrossRef
13.
go back to reference Rockwood K, Stadnyk K, MacKnight C, McDowell I, Hébert R, Hogan DB. A brief clinical instrument to classify frailty in elderly people. Lancet. 1999;353(9148):205–6.PubMedCrossRef Rockwood K, Stadnyk K, MacKnight C, McDowell I, Hébert R, Hogan DB. A brief clinical instrument to classify frailty in elderly people. Lancet. 1999;353(9148):205–6.PubMedCrossRef
14.
go back to reference Mitnitski AB, Graham JE, Mogilner AJ, Rockwood K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002;2:1–8.PubMedPubMedCentralCrossRef Mitnitski AB, Graham JE, Mogilner AJ, Rockwood K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002;2:1–8.PubMedPubMedCentralCrossRef
15.
go back to reference Jones DM, Song X, Rockwood K. Operationalizing a frailty index from a standardized comprehensive geriatric assessment. J Am Geriatr Soc. 2004;52(11):1929–33.PubMedCrossRef Jones DM, Song X, Rockwood K. Operationalizing a frailty index from a standardized comprehensive geriatric assessment. J Am Geriatr Soc. 2004;52(11):1929–33.PubMedCrossRef
16.
go back to reference Paw MJMCA, De Groot LCPGM, Van Gend SV, Schoterman MHC, Schouten EG, Schroll M, et al. Inactivity and weight loss: effective criteria to identify frailty. J Nutr Heal Aging. 2003;7(1):55–60. Paw MJMCA, De Groot LCPGM, Van Gend SV, Schoterman MHC, Schouten EG, Schroll M, et al. Inactivity and weight loss: effective criteria to identify frailty. J Nutr Heal Aging. 2003;7(1):55–60.
17.
go back to reference Schwenk M, Mohler J, Wendel C, D’Huyvetter K, Fain M, Taylor-Piliae R, et al. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: baseline results of the Arizona frailty cohort study. Gerontology. 2015;61(3):258–67.PubMedCrossRef Schwenk M, Mohler J, Wendel C, D’Huyvetter K, Fain M, Taylor-Piliae R, et al. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: baseline results of the Arizona frailty cohort study. Gerontology. 2015;61(3):258–67.PubMedCrossRef
18.
go back to reference Lamoth CJ, van Deudekom FJ, van Campen JP, Appels BA, de Vries OJ, Pijnappels M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J Neuroeng Rehabil. 2011;8(1):2.PubMedPubMedCentralCrossRef Lamoth CJ, van Deudekom FJ, van Campen JP, Appels BA, de Vries OJ, Pijnappels M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J Neuroeng Rehabil. 2011;8(1):2.PubMedPubMedCentralCrossRef
19.
go back to reference Menz HB, Lord SR, Fitzpatrick RC. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture. 2003;18(1):35–46.PubMedCrossRef Menz HB, Lord SR, Fitzpatrick RC. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture. 2003;18(1):35–46.PubMedCrossRef
20.
go back to reference Lindemann U, Najafi B, Zijlstra W, Hauer K, Muche R, Becker C, et al. Distance to achieve steady state walking speed in frail elderly persons. Gait Posture. 2008;27(1):91–6.PubMedCrossRef Lindemann U, Najafi B, Zijlstra W, Hauer K, Muche R, Becker C, et al. Distance to achieve steady state walking speed in frail elderly persons. Gait Posture. 2008;27(1):91–6.PubMedCrossRef
21.
go back to reference Zhong R, Rau P-LP, Yan X. Application of smart bracelet to monitor frailty-related gait parameters of older Chinese adults: a preliminary study. Geriatr Gerontol Int. 2018;18(9):1366–71.PubMedCrossRef Zhong R, Rau P-LP, Yan X. Application of smart bracelet to monitor frailty-related gait parameters of older Chinese adults: a preliminary study. Geriatr Gerontol Int. 2018;18(9):1366–71.PubMedCrossRef
22.
go back to reference Martínez-Ramírez A, Martinikorena I, Gómez M, Lecumberri P, Millor N, Rodríguez-Mañas L, et al. Frailty assessment based on trunk kinematic parameters during walking. J Neuroeng Rehabil. 2015;12:48.PubMedPubMedCentralCrossRef Martínez-Ramírez A, Martinikorena I, Gómez M, Lecumberri P, Millor N, Rodríguez-Mañas L, et al. Frailty assessment based on trunk kinematic parameters during walking. J Neuroeng Rehabil. 2015;12:48.PubMedPubMedCentralCrossRef
23.
go back to reference Folstein MF, Folstein SE, McHugh PR. &quot;mini-mental state&quot;. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. Folstein MF, Folstein SE, McHugh PR. &quot;mini-mental state&quot;. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.
24.
go back to reference World Medical Association. World Medical Association Declaration of Helsinki. JAMA. 2013;310(20):2191.CrossRef World Medical Association. World Medical Association Declaration of Helsinki. JAMA. 2013;310(20):2191.CrossRef
25.
go back to reference Fieo RA, Mortensen EL, Rantanen T, Avlund K, Fieo R. Improving a measure of mobility-related fatigue (the mobility-tiredness scale) by establishing Item intensity. J Am Geriatr Soc. 2013;61(3):429–33.PubMedPubMedCentralCrossRef Fieo RA, Mortensen EL, Rantanen T, Avlund K, Fieo R. Improving a measure of mobility-related fatigue (the mobility-tiredness scale) by establishing Item intensity. J Am Geriatr Soc. 2013;61(3):429–33.PubMedPubMedCentralCrossRef
26.
go back to reference Orme JG, Reis J, Herz EJ. Factorial and discriminant validity of the Center for Epidemiological Studies Depression (CES-D) scale. J Clin Psychol. 1986;42(1):28–33.PubMedCrossRef Orme JG, Reis J, Herz EJ. Factorial and discriminant validity of the Center for Epidemiological Studies Depression (CES-D) scale. J Clin Psychol. 1986;42(1):28–33.PubMedCrossRef
27.
go back to reference Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C. Development and initial validation of the falls efficacy scale-international (FES-I). Age Ageing. 2005;34(6):614–9.PubMedCrossRef Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C. Development and initial validation of the falls efficacy scale-international (FES-I). Age Ageing. 2005;34(6):614–9.PubMedCrossRef
28.
go back to reference Mahoney FI, Barthel DW. Functional evaluation: the barthel index. Md State Med J. 1965;14:61–5.PubMed Mahoney FI, Barthel DW. Functional evaluation: the barthel index. Md State Med J. 1965;14:61–5.PubMed
29.
go back to reference Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ, Robert P. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans Biomed Eng. 2003;50(6):711–23.PubMedCrossRef Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ, Robert P. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans Biomed Eng. 2003;50(6):711–23.PubMedCrossRef
30.
go back to reference Najafi B, Aminian K, Loew F, Blanc Y, Robert PA. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Biomed Eng. 2002;49(8):843–51.PubMedCrossRef Najafi B, Aminian K, Loew F, Blanc Y, Robert PA. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Biomed Eng. 2002;49(8):843–51.PubMedCrossRef
31.
go back to reference Najafi B, Armstrong DG, Mohler J. Novel wearable Technology for Assessing Spontaneous Daily Physical Activity and Risk of falling in older adults with diabetes. J Diabetes Sci Technol. 2013;7(5):1147–60.PubMedPubMedCentralCrossRef Najafi B, Armstrong DG, Mohler J. Novel wearable Technology for Assessing Spontaneous Daily Physical Activity and Risk of falling in older adults with diabetes. J Diabetes Sci Technol. 2013;7(5):1147–60.PubMedPubMedCentralCrossRef
32.
go back to reference Ismail AR, Asfour SS. Discrete wavelet transform: a tool in smoothing kinematic data. J Biomech. 1999;32(3):317–21.PubMedCrossRef Ismail AR, Asfour SS. Discrete wavelet transform: a tool in smoothing kinematic data. J Biomech. 1999;32(3):317–21.PubMedCrossRef
33.
go back to reference Wachowiak MP, Rash GS, Quesada PM, Desoky AH. Wavelet-based noise removal for biomechanical signals: a comparative study. IEEE Trans Biomed Eng. 2000;47(3):360–8.PubMedCrossRef Wachowiak MP, Rash GS, Quesada PM, Desoky AH. Wavelet-based noise removal for biomechanical signals: a comparative study. IEEE Trans Biomed Eng. 2000;47(3):360–8.PubMedCrossRef
34.
go back to reference Sekine M, Tamura T, Ogawa M, Togawa T, Fukui Y. Classification of acceleration waveform in a continuous walking record. In: Institute of Electrical and Electronics Engineers (IEEE); 2002. p. 1523–6. Sekine M, Tamura T, Ogawa M, Togawa T, Fukui Y. Classification of acceleration waveform in a continuous walking record. In: Institute of Electrical and Electronics Engineers (IEEE); 2002. p. 1523–6.
35.
go back to reference Orendurff MS. How humans walk: bout duration, steps per bout, and rest duration. J Rehabil Res Dev. 2008;45(7):1077–90.PubMedCrossRef Orendurff MS. How humans walk: bout duration, steps per bout, and rest duration. J Rehabil Res Dev. 2008;45(7):1077–90.PubMedCrossRef
36.
go back to reference Weiss A, Brozgol M, Dorfman M, Herman T, Shema S, Giladi N, et al. Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair. 2013;27(8):742–52.PubMedCrossRef Weiss A, Brozgol M, Dorfman M, Herman T, Shema S, Giladi N, et al. Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair. 2013;27(8):742–52.PubMedCrossRef
37.
go back to reference Yogev G, Plotnik M, Peretz C, Giladi N, Hausdorff JM. Gait asymmetry in patients with Parkinson’s disease and elderly fallers: when does the bilateral coordination of gait require attention? Exp Brain Res. 2007;177(3):336–46.PubMedCrossRef Yogev G, Plotnik M, Peretz C, Giladi N, Hausdorff JM. Gait asymmetry in patients with Parkinson’s disease and elderly fallers: when does the bilateral coordination of gait require attention? Exp Brain Res. 2007;177(3):336–46.PubMedCrossRef
38.
go back to reference Weiss A, Sharifi S, Plotnik M, van Vugt JPP, Giladi N, Hausdorff JM. Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabil Neural Repair. 2011;25(9):810–8.PubMedCrossRef Weiss A, Sharifi S, Plotnik M, van Vugt JPP, Giladi N, Hausdorff JM. Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabil Neural Repair. 2011;25(9):810–8.PubMedCrossRef
39.
go back to reference Lipsitz LA, Goldberger AL. Loss of “complexity” and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):1806–9.PubMedCrossRef Lipsitz LA, Goldberger AL. Loss of “complexity” and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):1806–9.PubMedCrossRef
40.
go back to reference Moe-Nilssen R, Helbostad JL. Estimation of gait cycle characteristics by trunk accelerometry. J Biomech. 2004;37(1):121–6.PubMedCrossRef Moe-Nilssen R, Helbostad JL. Estimation of gait cycle characteristics by trunk accelerometry. J Biomech. 2004;37(1):121–6.PubMedCrossRef
41.
go back to reference Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, Stergiou N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng. 2013;41(2):349–65.PubMedCrossRef Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, Stergiou N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng. 2013;41(2):349–65.PubMedCrossRef
42.
go back to reference Richman JS, Lake DE, Moorman JR. Sample Entropy. In: Methods in enzymology; 2004. p. 172–84. Richman JS, Lake DE, Moorman JR. Sample Entropy. In: Methods in enzymology; 2004. p. 172–84.
43.
go back to reference Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Circ Physiol. 2000;278(6):H2039–49.CrossRef Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Circ Physiol. 2000;278(6):H2039–49.CrossRef
44.
go back to reference John D, Miller R, Kozey-Keadle S, Caldwell G, Freedson P. Biomechanical examination of the ‘plateau phenomenon’ in ActiGraph vertical activity counts. Physiol Meas. 2012;33(2):219.PubMedPubMedCentralCrossRef John D, Miller R, Kozey-Keadle S, Caldwell G, Freedson P. Biomechanical examination of the ‘plateau phenomenon’ in ActiGraph vertical activity counts. Physiol Meas. 2012;33(2):219.PubMedPubMedCentralCrossRef
45.
go back to reference Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82(8):1050–6.PubMedCrossRef Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82(8):1050–6.PubMedCrossRef
46.
go back to reference Sheridan PL, Solomont J, Kowall N, Hausdorff JM. Influence of executive function on Locomotor function: divided attention increases gait variability in Alzheimer’s disease. J Am Geriatr Soc. 2003;51(11):1633–7.PubMedCrossRef Sheridan PL, Solomont J, Kowall N, Hausdorff JM. Influence of executive function on Locomotor function: divided attention increases gait variability in Alzheimer’s disease. J Am Geriatr Soc. 2003;51(11):1633–7.PubMedCrossRef
47.
go back to reference Verghese J, Holtzer R, Lipton RB, Wang C. Mobility stress test approach to predicting frailty, disability, and mortality in high-functioning older adults. J Am Geriatr Soc. 2012;60(10):1901–5.PubMedPubMedCentralCrossRef Verghese J, Holtzer R, Lipton RB, Wang C. Mobility stress test approach to predicting frailty, disability, and mortality in high-functioning older adults. J Am Geriatr Soc. 2012;60(10):1901–5.PubMedPubMedCentralCrossRef
48.
go back to reference Hausdorff JM. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci. 2007;26(4):555–89.PubMedPubMedCentralCrossRef Hausdorff JM. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci. 2007;26(4):555–89.PubMedPubMedCentralCrossRef
49.
go back to reference Toosizadeh N, Lei H, Schwenk M, Sherman SJ, Sternberg E, Mohler J, et al. Does integrative medicine enhance balance in aging adults? Proof of concept for the benefit of Electroacupuncture therapy in Parkinson’s disease. Gerontology. 2015;61(1):3–14.PubMedCrossRef Toosizadeh N, Lei H, Schwenk M, Sherman SJ, Sternberg E, Mohler J, et al. Does integrative medicine enhance balance in aging adults? Proof of concept for the benefit of Electroacupuncture therapy in Parkinson’s disease. Gerontology. 2015;61(1):3–14.PubMedCrossRef
50.
go back to reference Lei H, Toosizadeh N, Schwenk M, Sherman S, Karp S, Sternberg E, et al. A Pilot Clinical Trial to Objectively Assess the Efficacy of Electroacupuncture on Gait in Patients with Parkinson’s Disease Using Body Worn Sensors. PLoS One. 2016;11(5):e0155613.PubMedPubMedCentralCrossRef Lei H, Toosizadeh N, Schwenk M, Sherman S, Karp S, Sternberg E, et al. A Pilot Clinical Trial to Objectively Assess the Efficacy of Electroacupuncture on Gait in Patients with Parkinson’s Disease Using Body Worn Sensors. PLoS One. 2016;11(5):e0155613.PubMedPubMedCentralCrossRef
51.
go back to reference Petre Stoica & Randolph L. Moses. Spectral analysis of signals | Pearson. Pearson; 2005. Petre Stoica & Randolph L. Moses. Spectral analysis of signals | Pearson. Pearson; 2005.
52.
53.
go back to reference Palshikar GK. Simple Algorithms for Peak Detection in Time-Series Simple Algorithms for Peak Detection in Time-Series. Design. (July); 2002. p. 1–13. Palshikar GK. Simple Algorithms for Peak Detection in Time-Series Simple Algorithms for Peak Detection in Time-Series. Design. (July); 2002. p. 1–13.
54.
go back to reference Liao F, Wang J, He P. Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis. Med Eng Phys. 2008;30(3):299–310.PubMedCrossRef Liao F, Wang J, He P. Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis. Med Eng Phys. 2008;30(3):299–310.PubMedCrossRef
55.
go back to reference IJmker T, Lamoth CJC. Gait and cognition: the relationship between gait stability and variability with executive function in persons with and without dementia. Gait Posture. 2012;35(1):126–30.PubMedCrossRef IJmker T, Lamoth CJC. Gait and cognition: the relationship between gait stability and variability with executive function in persons with and without dementia. Gait Posture. 2012;35(1):126–30.PubMedCrossRef
56.
go back to reference Riva F, Toebes MJP, Pijnappels M, Stagni R, van Dieën JH. Estimating fall risk with inertial sensors using gait stability measures that do not require step detection. Gait Posture. 2013;38(2):170–4.PubMedCrossRef Riva F, Toebes MJP, Pijnappels M, Stagni R, van Dieën JH. Estimating fall risk with inertial sensors using gait stability measures that do not require step detection. Gait Posture. 2013;38(2):170–4.PubMedCrossRef
57.
go back to reference Orter S, Ravi DK, Singh NB, Vogl F, Taylor WR, König IN. A method to concatenate multiple short time series for evaluating dynamic behaviour during walking. PLoS One. 2019;14(6):e0218594.PubMedPubMedCentralCrossRef Orter S, Ravi DK, Singh NB, Vogl F, Taylor WR, König IN. A method to concatenate multiple short time series for evaluating dynamic behaviour during walking. PLoS One. 2019;14(6):e0218594.PubMedPubMedCentralCrossRef
58.
go back to reference McCamley JD, Denton W, Arnold A, Raffalt PC, Yentes JM. On the calculation of sample entropy using continuous and discrete human gait data. Entropy (Basel). 2018;20(10):764.CrossRef McCamley JD, Denton W, Arnold A, Raffalt PC, Yentes JM. On the calculation of sample entropy using continuous and discrete human gait data. Entropy (Basel). 2018;20(10):764.CrossRef
59.
go back to reference Raffalt PC, McCamley J, Denton W, Yentes JM. Sampling frequency influences sample entropy of kinematics during walking. Med Biol Eng Comput. 2019;57(4):759–64.PubMedCrossRef Raffalt PC, McCamley J, Denton W, Yentes JM. Sampling frequency influences sample entropy of kinematics during walking. Med Biol Eng Comput. 2019;57(4):759–64.PubMedCrossRef
60.
go back to reference Shi L, Duan F, Yang Y, Sun Z. The Effect of Treadmill Walking on Gait and Upper Trunk through Linear and Nonlinear Analysis Methods. Sensors (Basel). 2019;19(9):E2204.CrossRef Shi L, Duan F, Yang Y, Sun Z. The Effect of Treadmill Walking on Gait and Upper Trunk through Linear and Nonlinear Analysis Methods. Sensors (Basel). 2019;19(9):E2204.CrossRef
61.
go back to reference Albers DJ, Hripcsak G. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series. Chaos Solitons Fractals. 2012;45(6):853–60.PubMedPubMedCentralCrossRef Albers DJ, Hripcsak G. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series. Chaos Solitons Fractals. 2012;45(6):853–60.PubMedPubMedCentralCrossRef
62.
go back to reference O’brien RM. A caution regarding rules of thumb for variance inflation factors; 2007.CrossRef O’brien RM. A caution regarding rules of thumb for variance inflation factors; 2007.CrossRef
63.
go back to reference Hof AL. The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum Mov Sci. 2008;27(1):112–25.PubMedCrossRef Hof AL. The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum Mov Sci. 2008;27(1):112–25.PubMedCrossRef
64.
go back to reference Toosizadeh N, Mohler J, Lei H, Parvaneh S, Sherman S, Najafi B. Motor Performance Assessment in Parkinson’s Disease: Association between Objective In-Clinic, Objective In-Home, and Subjective/Semi-Objective Measures. Maetzler W, editor. PLoS One. 2015;10(4):e0124763.PubMedPubMedCentralCrossRef Toosizadeh N, Mohler J, Lei H, Parvaneh S, Sherman S, Najafi B. Motor Performance Assessment in Parkinson’s Disease: Association between Objective In-Clinic, Objective In-Home, and Subjective/Semi-Objective Measures. Maetzler W, editor. PLoS One. 2015;10(4):e0124763.PubMedPubMedCentralCrossRef
65.
go back to reference Proakis JG, Manolakis DG. Digital signal processing: Principles, algorithms, and applications; 1992. Proakis JG, Manolakis DG. Digital signal processing: Principles, algorithms, and applications; 1992.
66.
go back to reference Casartelli NC, Item-Glatthorn JF, Bizzini M, Leunig M, Maffiuletti NA. Differences in gait characteristics between total hip, knee, and ankle arthroplasty patients: a six-month postoperative comparison. BMC Musculoskelet Disord. 2013;14:176.PubMedPubMedCentralCrossRef Casartelli NC, Item-Glatthorn JF, Bizzini M, Leunig M, Maffiuletti NA. Differences in gait characteristics between total hip, knee, and ankle arthroplasty patients: a six-month postoperative comparison. BMC Musculoskelet Disord. 2013;14:176.PubMedPubMedCentralCrossRef
67.
go back to reference Gill TM, Gahbauer EA, Allore HG, Han L. Transitions between frailty states among community-living older persons. Arch Intern Med. 2006;166(4):418.PubMedCrossRef Gill TM, Gahbauer EA, Allore HG, Han L. Transitions between frailty states among community-living older persons. Arch Intern Med. 2006;166(4):418.PubMedCrossRef
68.
go back to reference Suh M, Chen C-A, Woodbridge J, Tu MK, Kim JI, Nahapetian A, et al. A remote patient monitoring system for congestive heart failure. J Med Syst. 2011;35(5):1165–79.PubMedPubMedCentralCrossRef Suh M, Chen C-A, Woodbridge J, Tu MK, Kim JI, Nahapetian A, et al. A remote patient monitoring system for congestive heart failure. J Med Syst. 2011;35(5):1165–79.PubMedPubMedCentralCrossRef
69.
go back to reference Youm S, Lee G, Park S, Zhu W. Development of remote healthcare system for measuring and promoting healthy lifestyle. Expert Syst Appl. 2011;38(3):2828–34.CrossRef Youm S, Lee G, Park S, Zhu W. Development of remote healthcare system for measuring and promoting healthy lifestyle. Expert Syst Appl. 2011;38(3):2828–34.CrossRef
70.
go back to reference Malhi K, Mukhopadhyay SC, Schnepper J, Haefke M, Ewald H. A Zigbee-based wearable physiological parameters monitoring system. IEEE Sensors J. 2012;12(3):423–30.CrossRef Malhi K, Mukhopadhyay SC, Schnepper J, Haefke M, Ewald H. A Zigbee-based wearable physiological parameters monitoring system. IEEE Sensors J. 2012;12(3):423–30.CrossRef
71.
go back to reference Yamada I, Lopez G. Wearable sensing systems for healthcare monitoring. In: Digest of Technical Papers - Symposium on VLSI Technology (VLSIT). IEEE; 2012. p. 5–10. Yamada I, Lopez G. Wearable sensing systems for healthcare monitoring. In: Digest of Technical Papers - Symposium on VLSI Technology (VLSIT). IEEE; 2012. p. 5–10.
72.
go back to reference Custodio V, Herrera F, López G, Moreno J, Custodio V, Herrera FJ, et al. A review on architectures and communications technologies for wearable health-monitoring systems. Sensors. 2012;12(10):13907–46.PubMedCrossRef Custodio V, Herrera F, López G, Moreno J, Custodio V, Herrera FJ, et al. A review on architectures and communications technologies for wearable health-monitoring systems. Sensors. 2012;12(10):13907–46.PubMedCrossRef
73.
go back to reference Pantelopoulos A, Bourbakis NG. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. Appl Rev. 2010;40(1):1–2. Pantelopoulos A, Bourbakis NG. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. Appl Rev. 2010;40(1):1–2.
74.
go back to reference Alemdar H, Ersoy C. Wireless sensor networks for healthcare: a survey. Comput Netw. 2010;54(15):2688–710.CrossRef Alemdar H, Ersoy C. Wireless sensor networks for healthcare: a survey. Comput Netw. 2010;54(15):2688–710.CrossRef
75.
go back to reference Baig MM, Gholamhosseini H. Smart health monitoring systems: an overview of design and modeling. J Med Syst. 2013;37(2):9898.PubMedCrossRef Baig MM, Gholamhosseini H. Smart health monitoring systems: an overview of design and modeling. J Med Syst. 2013;37(2):9898.PubMedCrossRef
76.
go back to reference Chuan Yen T, Mohler J, Dohm M, Laksari K, Najafi B, Toosizadeh N. The effect of pain relief on daily physical activity: in-home objective physical activity assessment in chronic low Back pain patients after paravertebral spinal block. Sensors. 2018;18(9):3048.CrossRef Chuan Yen T, Mohler J, Dohm M, Laksari K, Najafi B, Toosizadeh N. The effect of pain relief on daily physical activity: in-home objective physical activity assessment in chronic low Back pain patients after paravertebral spinal block. Sensors. 2018;18(9):3048.CrossRef
77.
go back to reference Rashidi P, Mihailidis A. A survey on ambient-assisted living tools for older adults. IEEE J Biomed Heal Informatics. 2013;17(3):579–90.CrossRef Rashidi P, Mihailidis A. A survey on ambient-assisted living tools for older adults. IEEE J Biomed Heal Informatics. 2013;17(3):579–90.CrossRef
78.
go back to reference Scanaill CN, Carew S, Barralon P, Noury N, Lyons D, Lyons GM. A review of approaches to mobility Telemonitoring of the elderly in their living environment. Ann Biomed Eng. 2006;34(4):547–63.CrossRef Scanaill CN, Carew S, Barralon P, Noury N, Lyons D, Lyons GM. A review of approaches to mobility Telemonitoring of the elderly in their living environment. Ann Biomed Eng. 2006;34(4):547–63.CrossRef
Metadata
Title
Sensor-based characterization of daily walking: a new paradigm in pre-frailty/frailty assessment
Authors
Danya Pradeep Kumar
Nima Toosizadeh
Jane Mohler
Hossein Ehsani
Cassidy Mannier
Kaveh Laksari
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2020
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-020-01572-1

Other articles of this Issue 1/2020

BMC Geriatrics 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.