Skip to main content
Top
Published in: Respiratory Research 1/2006

Open Access 01-12-2006 | Research

Selective regulation of MAP kinases and Chemokine expression after ligation of ICAM-1 on human airway epithelial cells

Authors: Thomas M Krunkosky, Carla L Jarrett

Published in: Respiratory Research | Issue 1/2006

Login to get access

Abstract

Background

Intercellular adhesion molecule 1 (ICAM-1) is an immunoglobulin-like cell adhesion molecule expressed on the surface of multiple cell types, including airway epithelial cells. It has been documented that cross-linking ICAM-1 on the surface of leukocytes results in changes in cellular function through outside-inside signaling; however, the effect of cross-linking ICAM-1 on the surface of airway epithelial cells is currently unknown. The objective of this study was to investigate whether or not cross-linking ICAM-1 on the surface of airway epithelial cells phosphorylated MAP kinases or stimulated chemokine expression and secretion.

Methods

The human lung adenocarcinoma (A549) cells and primary cultures of normal human bronchial epithelial (NHBE) cells were used in these studies. To increase ICAM-1 surface expression, cultures were stimulated with TNFα to enhance ICAM-1 surface expression. Following ICAM-1 upregulation, ICAM-1 was ligated with a murine anti-human ICAM-1 antibody and subsequently cross-linked with a secondary antibody (anti-mouse IgG(ab')2) in the presence or absence of the MAP kinase inhibitors. Following treatments, cultures were assessed for MAPK activation and chemokine gene expression and secretion. Control cultures were treated with murine IgG1 antibody or murine IgG1 antibody and anti-mouse IgG(ab')2 to illustrate specificity. Data were analyzed for significance using a one-way analysis of variance (ANOVA) with Bonferroni post-test correction for multiple comparisons, and relative gene expression was analyzed using the 2-ΔΔCT method.

Results

ICAM-1 cross-linking selectively phosphorylated both ERK and JNK MAP kinases as detected by western blot analysis. In addition, cross-linking resulted in differential regulation of chemokine expression. Specifically, IL-8 mRNA and protein secretion was not altered by ICAM-1 cross-linking, in contrast, RANTES mRNA and protein secretion was induced in both epithelial cultures. These events were specifically inhibited by the ERK inhibitor PD98059. Data indicates that ICAM-1 cross-linking stimulates a synergistic increase in TNFα-mediated RANTES production involving activation of ERK in airway epithelial cells.

Conclusion

Results demonstrate that cytokine induced ICAM-1 on the surface of airway epithelial cells induce outside-inside signaling through cross-linking ICAM-1, selectively altering intracellular pathways and cytokine production. These results suggest that ICAM-1 cross-linking can contribute to inflammation in the lung via production of the chemokine RANTES.
Literature
1.
go back to reference Albelda SM: Endothelial and epithelial cell adhesion molecules. Am J Respir Cell Mol Biol 1991,4(3):195–203.CrossRefPubMed Albelda SM: Endothelial and epithelial cell adhesion molecules. Am J Respir Cell Mol Biol 1991,4(3):195–203.CrossRefPubMed
2.
go back to reference Hubbard AK, Rothlein R: Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med 2000,28(9):1379–1386.CrossRefPubMed Hubbard AK, Rothlein R: Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med 2000,28(9):1379–1386.CrossRefPubMed
3.
go back to reference Krunkosky TM, Fischer BM, Martin LD, Jones N, Akley NJ, Adler KB: Effects of TNF alpha on expression of ICAM-1 in human airway epithelial cells in vitro: Signaling pathways controlling surface and gene expression. Am J Respir Cell Mol Biol 2000. Krunkosky TM, Fischer BM, Martin LD, Jones N, Akley NJ, Adler KB: Effects of TNF alpha on expression of ICAM-1 in human airway epithelial cells in vitro: Signaling pathways controlling surface and gene expression. Am J Respir Cell Mol Biol 2000.
4.
go back to reference Fahy JV: Remodeling of the Airway Epithelium in Asthma. Am J Respir Crit Care Med 2001,164(10 Pt 2):S46-S51..CrossRefPubMed Fahy JV: Remodeling of the Airway Epithelium in Asthma. Am J Respir Crit Care Med 2001,164(10 Pt 2):S46-S51..CrossRefPubMed
5.
go back to reference Holgate ST: The inflammation-repair cycle in asthma: the pivotal role of the airway epithelium. Clin Exp Allergy 1998,28(Suppl 5):97–103.CrossRefPubMed Holgate ST: The inflammation-repair cycle in asthma: the pivotal role of the airway epithelium. Clin Exp Allergy 1998,28(Suppl 5):97–103.CrossRefPubMed
6.
go back to reference Martin LD, Krunkosky TM, Dye JA, Fischer BM, Jiang NF, Rochelle LG, Akley NJ, Dreher KL, Adler KB: The role of reactive oxygen and nitrogen species in the response of airway epithelium to particulates. Environ Health Perspect 1997, 105 Suppl 5:1301–1307.CrossRefPubMed Martin LD, Krunkosky TM, Dye JA, Fischer BM, Jiang NF, Rochelle LG, Akley NJ, Dreher KL, Adler KB: The role of reactive oxygen and nitrogen species in the response of airway epithelium to particulates. Environ Health Perspect 1997, 105 Suppl 5:1301–1307.CrossRefPubMed
7.
go back to reference Bjornsdottir US, Cypcar DM: Asthma: an inflammatory mediator soup. Allergy 1999, 54 Suppl 49:55–61.CrossRefPubMed Bjornsdottir US, Cypcar DM: Asthma: an inflammatory mediator soup. Allergy 1999, 54 Suppl 49:55–61.CrossRefPubMed
8.
go back to reference Boulet LP, Chakir J, Dube J, Laprise C, Boutet M, Laviolette M: Airway inflammation and structural changes in airway hyper-responsiveness and asthma: an overview. Can Respir J 1998,5(1):16–21.CrossRefPubMed Boulet LP, Chakir J, Dube J, Laprise C, Boutet M, Laviolette M: Airway inflammation and structural changes in airway hyper-responsiveness and asthma: an overview. Can Respir J 1998,5(1):16–21.CrossRefPubMed
9.
go back to reference Braunstahl GJ, Overbeek SE, Kleinjan A, Prins JB, Hoogsteden HC, Fokkens WJ: Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol 2001,107(3):469–476.CrossRefPubMed Braunstahl GJ, Overbeek SE, Kleinjan A, Prins JB, Hoogsteden HC, Fokkens WJ: Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol 2001,107(3):469–476.CrossRefPubMed
10.
go back to reference Griffiths-Johnson DA, Collins PD, Jose PJ, Williams TJ: Animal models of asthma: role of chemokines. Methods Enzymol 1997, 288:241–266.CrossRefPubMed Griffiths-Johnson DA, Collins PD, Jose PJ, Williams TJ: Animal models of asthma: role of chemokines. Methods Enzymol 1997, 288:241–266.CrossRefPubMed
11.
go back to reference Hizawa N, Yamaguchi E, Konno S, Tanino Y, Jinushi E, Nishimura M: A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am J Respir Crit Care Med 2002,166(5):686–690.CrossRefPubMed Hizawa N, Yamaguchi E, Konno S, Tanino Y, Jinushi E, Nishimura M: A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am J Respir Crit Care Med 2002,166(5):686–690.CrossRefPubMed
12.
go back to reference Oltmanns U, Issa R, Sukkar MB, John M, Chung KF: Role of c-jun N-terminal kinase in the induced release of GM-CSF, RANTES and IL-8 from human airway smooth muscle cells. Br J Pharmacol 2003,139(6):1228–1234.CrossRefPubMedPubMedCentral Oltmanns U, Issa R, Sukkar MB, John M, Chung KF: Role of c-jun N-terminal kinase in the induced release of GM-CSF, RANTES and IL-8 from human airway smooth muscle cells. Br J Pharmacol 2003,139(6):1228–1234.CrossRefPubMedPubMedCentral
13.
go back to reference Pazdrak K, Olszewska-Pazdrak B, Liu T, Takizawa R, Brasier AR, Garofalo RP, Casola A: MAPK activation is involved in posttranscriptional regulation of RSV-induced RANTES gene expression. Am J Physiol Lung Cell Mol Physiol 2002,283(2):L364–72.CrossRefPubMed Pazdrak K, Olszewska-Pazdrak B, Liu T, Takizawa R, Brasier AR, Garofalo RP, Casola A: MAPK activation is involved in posttranscriptional regulation of RSV-induced RANTES gene expression. Am J Physiol Lung Cell Mol Physiol 2002,283(2):L364–72.CrossRefPubMed
14.
go back to reference Maruoka S, Hashimoto S, Gon Y, Takeshita I, Horie T: PAF-induced RANTES production by human airway smooth muscle cells requires both p38 MAP kinase and Erk. Am J Respir Crit Care Med 2000,161(3 Pt 1):922–929.CrossRefPubMed Maruoka S, Hashimoto S, Gon Y, Takeshita I, Horie T: PAF-induced RANTES production by human airway smooth muscle cells requires both p38 MAP kinase and Erk. Am J Respir Crit Care Med 2000,161(3 Pt 1):922–929.CrossRefPubMed
16.
go back to reference Wong WS: Inhibitors of the tyrosine kinase signaling cascade for asthma. Curr Opin Pharmacol 2005,5(3):264–271.CrossRefPubMed Wong WS: Inhibitors of the tyrosine kinase signaling cascade for asthma. Curr Opin Pharmacol 2005,5(3):264–271.CrossRefPubMed
17.
go back to reference Hashimoto S, Gon Y, Matsumoto K, Takeshita I, MacHino T, Horie T: Intracellular glutathione regulates tumour necrosis factor-alpha-induced p38 MAP kinase activation and RANTES production by human bronchial epithelial cells. Clin Exp Allergy 2001,31(1):144–151.PubMed Hashimoto S, Gon Y, Matsumoto K, Takeshita I, MacHino T, Horie T: Intracellular glutathione regulates tumour necrosis factor-alpha-induced p38 MAP kinase activation and RANTES production by human bronchial epithelial cells. Clin Exp Allergy 2001,31(1):144–151.PubMed
18.
go back to reference Li J, Kartha S, Iasvovskaia S, Tan A, Bhat RK, Manaligod JM, Page K, Brasier AR, Hershenson MB: Regulation of human airway epithelial cell IL-8 expression by MAP kinases. Am J Physiol Lung Cell Mol Physiol 2002,283(4):L690–9.CrossRefPubMed Li J, Kartha S, Iasvovskaia S, Tan A, Bhat RK, Manaligod JM, Page K, Brasier AR, Hershenson MB: Regulation of human airway epithelial cell IL-8 expression by MAP kinases. Am J Physiol Lung Cell Mol Physiol 2002,283(4):L690–9.CrossRefPubMed
19.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001,25(4):402–408.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001,25(4):402–408.CrossRefPubMed
20.
go back to reference Krunkosky TM, Martin LD, Fischer BM, Voynow JA, Adler KB: Effects of TNFalpha on expression of ICAM-1 in human airway epithelial cells in vitro: oxidant-mediated pathways and transcription factors. Free Radic Biol Med 2003,35(9):1158–1167.CrossRefPubMed Krunkosky TM, Martin LD, Fischer BM, Voynow JA, Adler KB: Effects of TNFalpha on expression of ICAM-1 in human airway epithelial cells in vitro: oxidant-mediated pathways and transcription factors. Free Radic Biol Med 2003,35(9):1158–1167.CrossRefPubMed
21.
go back to reference Amos C, Romero IA, Schultze C, Rousell J, Pearson JD, Greenwood J, Adamson P: Cross-linking of brain endothelial intercellular adhesion molecule (ICAM)-1 induces association of ICAM-1 with detergent-insoluble cytoskeletal fraction. Arterioscler Thromb Vasc Biol 2001,21(5):810–816.CrossRefPubMed Amos C, Romero IA, Schultze C, Rousell J, Pearson JD, Greenwood J, Adamson P: Cross-linking of brain endothelial intercellular adhesion molecule (ICAM)-1 induces association of ICAM-1 with detergent-insoluble cytoskeletal fraction. Arterioscler Thromb Vasc Biol 2001,21(5):810–816.CrossRefPubMed
22.
go back to reference Davani EY, Dorscheid DR, Lee CH, Van Breemen C, Walley KR: Novel Regulatory Mechanism of Cardiomyocyte Contractility Involving Icam-1 and the Cytoskeleton. Am J Physiol Heart Circ Physiol 2004, 15:15. Davani EY, Dorscheid DR, Lee CH, Van Breemen C, Walley KR: Novel Regulatory Mechanism of Cardiomyocyte Contractility Involving Icam-1 and the Cytoskeleton. Am J Physiol Heart Circ Physiol 2004, 15:15.
23.
go back to reference Rothlein R, Kishimoto TK, Mainolfi E: Cross-linking of ICAM-1 induces co-signaling of an oxidative burst from mononuclear leukocytes. J Immunol 1994,152(5):2488–2495.PubMed Rothlein R, Kishimoto TK, Mainolfi E: Cross-linking of ICAM-1 induces co-signaling of an oxidative burst from mononuclear leukocytes. J Immunol 1994,152(5):2488–2495.PubMed
24.
go back to reference Wang Q, Pfeiffer GR, Stevens T, Doerschuk CM: Lung microvascular and arterial endothelial cells differ in their responses to intercellular adhesion molecule-1 ligation. Am J Respir Crit Care Med 2002,166(6):872–877.CrossRefPubMed Wang Q, Pfeiffer GR, Stevens T, Doerschuk CM: Lung microvascular and arterial endothelial cells differ in their responses to intercellular adhesion molecule-1 ligation. Am J Respir Crit Care Med 2002,166(6):872–877.CrossRefPubMed
25.
go back to reference Kleinbaum DG, Kupper LL, Muller KE: Applied Regression Analysis and Multivariate Methods. 2nd ed. PSW-Kent, Boston, MA. 1988. Kleinbaum DG, Kupper LL, Muller KE: Applied Regression Analysis and Multivariate Methods. 2nd ed. PSW-Kent, Boston, MA. 1988.
26.
go back to reference Fischer BM, Rochelle LG, Voynow JA, Akley NJ, Adler KB: Tumor necrosis factor-alpha stimulates mucin secretion and cyclic GMP production by guinea pig tracheal epithelial cells in vitro. Am J Respir Cell Mol Biol 1999,20(3):413–422.CrossRefPubMed Fischer BM, Rochelle LG, Voynow JA, Akley NJ, Adler KB: Tumor necrosis factor-alpha stimulates mucin secretion and cyclic GMP production by guinea pig tracheal epithelial cells in vitro. Am J Respir Cell Mol Biol 1999,20(3):413–422.CrossRefPubMed
27.
go back to reference Hauzenberger D, Hultenby K, Sumitran S, Ruegg C, Klominek J: Induction of transendothelial migration in normal and malignant human T lymphocytes. Anticancer Res 2000,20(4):2601–2611.PubMed Hauzenberger D, Hultenby K, Sumitran S, Ruegg C, Klominek J: Induction of transendothelial migration in normal and malignant human T lymphocytes. Anticancer Res 2000,20(4):2601–2611.PubMed
28.
go back to reference Holland J, Owens T: Signaling through intercellular adhesion molecule 1 (ICAM-1) in a B cell lymphoma line. The activation of Lyn tyrosine kinase and the mitogen-activated protein kinase pathway. J Biol Chem 1997,272(14):9108–9112.CrossRefPubMed Holland J, Owens T: Signaling through intercellular adhesion molecule 1 (ICAM-1) in a B cell lymphoma line. The activation of Lyn tyrosine kinase and the mitogen-activated protein kinase pathway. J Biol Chem 1997,272(14):9108–9112.CrossRefPubMed
29.
go back to reference Lawson C, Ainsworth M, Yacoub M, Rose M: Ligation of ICAM-1 on endothelial cells leads to expression of VCAM-1 via a nuclear factor-kappaB-independent mechanism. J Immunol 1999,162(5):2990–2996.PubMed Lawson C, Ainsworth M, Yacoub M, Rose M: Ligation of ICAM-1 on endothelial cells leads to expression of VCAM-1 via a nuclear factor-kappaB-independent mechanism. J Immunol 1999,162(5):2990–2996.PubMed
30.
go back to reference Wang Q, Pfeiffer GR, Gaarde WA: Activation of SRC tyrosine kinases in response to ICAM-1 ligation in pulmonary microvascular endothelial cells. J Biol Chem 2003,278(48):47731–43. Epub 2003 Sep 22..CrossRefPubMed Wang Q, Pfeiffer GR, Gaarde WA: Activation of SRC tyrosine kinases in response to ICAM-1 ligation in pulmonary microvascular endothelial cells. J Biol Chem 2003,278(48):47731–43. Epub 2003 Sep 22..CrossRefPubMed
31.
go back to reference Durieu-Trautmann O, Chaverot N, Cazaubon S, Strosberg AD, Couraud PO: Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J Biol Chem 1994,269(17):12536–12540.PubMed Durieu-Trautmann O, Chaverot N, Cazaubon S, Strosberg AD, Couraud PO: Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J Biol Chem 1994,269(17):12536–12540.PubMed
32.
go back to reference Sano H, Nakagawa N, Chiba R, Kurasawa K, Saito Y, Iwamoto I: Cross-linking of intercellular adhesion molecule-1 induces interleukin-8 and RANTES production through the activation of MAP kinases in human vascular endothelial cells. Biochem Biophys Res Commun 1998,250(3):694–698.CrossRefPubMed Sano H, Nakagawa N, Chiba R, Kurasawa K, Saito Y, Iwamoto I: Cross-linking of intercellular adhesion molecule-1 induces interleukin-8 and RANTES production through the activation of MAP kinases in human vascular endothelial cells. Biochem Biophys Res Commun 1998,250(3):694–698.CrossRefPubMed
33.
go back to reference Blaber R, Stylianou E, Clayton A, Steadman R: Selective regulation of ICAM-1 and RANTES gene expression after ICAM-1 ligation on human renal fibroblasts. J Am Soc Nephrol 2003,14(1):116–127.CrossRefPubMed Blaber R, Stylianou E, Clayton A, Steadman R: Selective regulation of ICAM-1 and RANTES gene expression after ICAM-1 ligation on human renal fibroblasts. J Am Soc Nephrol 2003,14(1):116–127.CrossRefPubMed
34.
go back to reference Knol EF, Roos D: Mechanisms regulating eosinophil extravasation in asthma. Eur Respir J Suppl 1996, 22:136s-140s.PubMed Knol EF, Roos D: Mechanisms regulating eosinophil extravasation in asthma. Eur Respir J Suppl 1996, 22:136s-140s.PubMed
35.
go back to reference Ying S, Robinson DS, Meng Q, Rottman J, Kennedy R, Ringler DJ, Mackay CR, Daugherty BL, Springer MS, Durham SR, Williams TJ, Kay AB: Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur J Immunol 1997,27(12):3507–3516.CrossRefPubMed Ying S, Robinson DS, Meng Q, Rottman J, Kennedy R, Ringler DJ, Mackay CR, Daugherty BL, Springer MS, Durham SR, Williams TJ, Kay AB: Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur J Immunol 1997,27(12):3507–3516.CrossRefPubMed
Metadata
Title
Selective regulation of MAP kinases and Chemokine expression after ligation of ICAM-1 on human airway epithelial cells
Authors
Thomas M Krunkosky
Carla L Jarrett
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2006
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-7-12

Other articles of this Issue 1/2006

Respiratory Research 1/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.