Skip to main content
Top
Published in: Malaria Journal 1/2014

Open Access 01-12-2014 | Research

Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum

Authors: Vicky M Avery, Sridevi Bashyam, Jeremy N Burrows, Sandra Duffy, George Papadatos, Shyni Puthukkuti, Yuvaraj Sambandan, Shivendra Singh, Thomas Spangenberg, David Waterson, Paul Willis

Published in: Malaria Journal | Issue 1/2014

Login to get access

Abstract

Background

In view of the need to continuously feed the pipeline with new anti-malarial agents adapted to differentiated and more stringent target product profiles (e.g., new modes of action, transmission-blocking activity or long-duration chemo-protection), a chemical library consisting of more than 250,000 compounds has been evaluated in a blood-stage Plasmodium falciparum growth inhibition assay and further assessed for chemical diversity and novelty.

Methods

The selection cascade used for the triaging of hits from the chemical library started with a robust three-step in vitro assay followed by an in silico analysis of the resulting confirmed hits. Upon reaching the predefined requirements for selectivity and potency, the set of hits was subjected to computational analysis to assess chemical properties and diversity. Furthermore, known marketed anti-malarial drugs were co-clustered acting as ‘signposts’ in the chemical space defined by the hits. Then, in cerebro evaluation of the chemical structures was performed to identify scaffolds that currently are or have been the focus of anti-malarial medicinal chemistry programmes. Next, prioritization according to relaxed physicochemical parameters took place, along with the search for structural analogues. Ultimately, synthesis of novel chemotypes with desired properties was performed and the resulting compounds were subsequently retested in a P. falciparum growth inhibition assay.

Results

This screening campaign led to a 1.25% primary hit rate, which decreased to 0.77% upon confirmatory repeat screening. With the predefined potency (EC50 < 1 μM) and selectivity (SI > 10) criteria, 178 compounds progressed to the next steps where chemical diversity, physicochemical properties and novelty assessment were taken into account. This resulted in the selection of 15 distinct chemical series.

Conclusion

A selection cascade was applied to prioritize hits resulting from the screening of a medium-sized chemical library against blood-stage P. falciparum. Emphasis was placed on chemical novelty whereby computational clustering, data mining of known anti-malarial chemotypes and the application of relaxed physicochemical filters, were key to the process. This led to the selection of 15 chemical series from which ten confirmed their activity when newly synthesized sample were tested.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO: World Malaria Report 2013. 2013, Geneva: World Health Organization WHO: World Malaria Report 2013. 2013, Geneva: World Health Organization
2.
go back to reference Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, Dondorp AM, Day NPJ, White NJ, White LJ: The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J. 2009, 8: 31-PubMedCentralCrossRefPubMed Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, Dondorp AM, Day NPJ, White NJ, White LJ: The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J. 2009, 8: 31-PubMedCentralCrossRefPubMed
3.
go back to reference Burrows JN, Burlot E, Campo B, Cherbuin S, Jeanneret S, Leroy D, Spangenberg T, Waterson D, Wells TN, Willis P: Antimalarial drug discovery - the path towards eradication. Parasitology. 2013, 141: 1-12. Burrows JN, Burlot E, Campo B, Cherbuin S, Jeanneret S, Leroy D, Spangenberg T, Waterson D, Wells TN, Willis P: Antimalarial drug discovery - the path towards eradication. Parasitology. 2013, 141: 1-12.
4.
go back to reference Burrows JN, Leroy D, Lotharius J, Waterson D: Special focus: neglected diseases challenges in antimalarial drug discovery. Future Med Chem. 2011, 3: 1401-1412.CrossRefPubMed Burrows JN, Leroy D, Lotharius J, Waterson D: Special focus: neglected diseases challenges in antimalarial drug discovery. Future Med Chem. 2011, 3: 1401-1412.CrossRefPubMed
5.
go back to reference Burrows JN, Sinden RE: The Medicinal Chemistry of Eradication: Hitting the Lifecycle Where it Hurts Approaches to Blocking Transmission. RSC Drug Discovery Series No. 14 Neglected Diseases and Drug Discovery. Edited by: Palmer MJ, Wells TNC. 2012, UK: Royal Society of Chemistry, 112-133. Burrows JN, Sinden RE: The Medicinal Chemistry of Eradication: Hitting the Lifecycle Where it Hurts Approaches to Blocking Transmission. RSC Drug Discovery Series No. 14 Neglected Diseases and Drug Discovery. Edited by: Palmer MJ, Wells TNC. 2012, UK: Royal Society of Chemistry, 112-133.
7.
go back to reference Hack MD, Rassokhin DN, Buyck C, Seierstad M, Skalkin A, Holte P, Jones TK, Mirzadegan T, Agrafiotis DK: Library Enhancement through the Wisdom of Crowds. J Chem Inf Model. 2011, 51: 3275-3286.CrossRefPubMed Hack MD, Rassokhin DN, Buyck C, Seierstad M, Skalkin A, Holte P, Jones TK, Mirzadegan T, Agrafiotis DK: Library Enhancement through the Wisdom of Crowds. J Chem Inf Model. 2011, 51: 3275-3286.CrossRefPubMed
9.
10.
go back to reference Anderson T, Nkhoma S, Ecker A, Fidock D: How can we identify parasite genes that underlie antimalarial drug resistance?. Pharmacogenomics. 2011, 12: 59-85.PubMedCentralCrossRefPubMed Anderson T, Nkhoma S, Ecker A, Fidock D: How can we identify parasite genes that underlie antimalarial drug resistance?. Pharmacogenomics. 2011, 12: 59-85.PubMedCentralCrossRefPubMed
11.
go back to reference Duffy S, Avery VM: Development and optimization of a novel 384-well anti-malarial imaging assay validated for high-throughput screening. Am J Trop Med Hyg. 2012, 86: 84-92.PubMedCentralCrossRefPubMed Duffy S, Avery VM: Development and optimization of a novel 384-well anti-malarial imaging assay validated for high-throughput screening. Am J Trop Med Hyg. 2012, 86: 84-92.PubMedCentralCrossRefPubMed
12.
go back to reference Gleeson MP, Hersey A, Montanari D, Overington J: Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov. 2011, 10: 197-208.CrossRefPubMed Gleeson MP, Hersey A, Montanari D, Overington J: Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov. 2011, 10: 197-208.CrossRefPubMed
14.
go back to reference Lipinski CA, Lombardo F, Dominy BW, Feeney PJ: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001, 46: 3-26.CrossRefPubMed Lipinski CA, Lombardo F, Dominy BW, Feeney PJ: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001, 46: 3-26.CrossRefPubMed
15.
go back to reference Jolliffe I: Principal Component Analysis. 2002, New York: Springer-V, 2 Jolliffe I: Principal Component Analysis. 2002, New York: Springer-V, 2
16.
go back to reference Bembenek SD, Tounge BA, Reynolds CH: Ligand efficiency and fragment-based drug discovery. Drug Discov Today. 2009, 14: 278-283.CrossRefPubMed Bembenek SD, Tounge BA, Reynolds CH: Ligand efficiency and fragment-based drug discovery. Drug Discov Today. 2009, 14: 278-283.CrossRefPubMed
17.
go back to reference Abad-Zapatero C: Ligand efficiency indices for effective drug discovery. Expert Opin Drug Discov. 2007, 2: 469-488.CrossRefPubMed Abad-Zapatero C: Ligand efficiency indices for effective drug discovery. Expert Opin Drug Discov. 2007, 2: 469-488.CrossRefPubMed
20.
go back to reference Plouffe D, Brinker A, McNamara C, Henson K, Kato N, Kuhen K, Nagle A, Adrián F, Matzen JT, Anderson P, Nam T-G, Gray NS, Chatterjee A, Janes J, Yan SF, Trager R, Caldwell JS, Schultz PG, Zhou Y, Winzeler EA: In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci U S A. 2008, 105: 9059-9064.PubMedCentralCrossRefPubMed Plouffe D, Brinker A, McNamara C, Henson K, Kato N, Kuhen K, Nagle A, Adrián F, Matzen JT, Anderson P, Nam T-G, Gray NS, Chatterjee A, Janes J, Yan SF, Trager R, Caldwell JS, Schultz PG, Zhou Y, Winzeler EA: In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci U S A. 2008, 105: 9059-9064.PubMedCentralCrossRefPubMed
21.
go back to reference Meister S, Plouffe DM, Kuhen KL, Bonamy GMC, Wu T, Barnes SW, Selina E, Borboa R, Bright AT, Che J, Cohen S, Dharia NV, Gagaring K, Gordon P, Groessl T, Kato N, Lee MCS, Mcnamara CW, Fidock DA, Nagle A, Nam T, Richmond W, Roland J, Rottmann M, Zhou B, Froissard P, Glynne RJ, Mazier D, Sattabongkot J, Schultz PG: Imaging of plasmodium liver stages to drive next-generation Antimalarial Drug Discovery. Science. 2011, 334: 1372-1377.PubMedCentralCrossRefPubMed Meister S, Plouffe DM, Kuhen KL, Bonamy GMC, Wu T, Barnes SW, Selina E, Borboa R, Bright AT, Che J, Cohen S, Dharia NV, Gagaring K, Gordon P, Groessl T, Kato N, Lee MCS, Mcnamara CW, Fidock DA, Nagle A, Nam T, Richmond W, Roland J, Rottmann M, Zhou B, Froissard P, Glynne RJ, Mazier D, Sattabongkot J, Schultz PG: Imaging of plasmodium liver stages to drive next-generation Antimalarial Drug Discovery. Science. 2011, 334: 1372-1377.PubMedCentralCrossRefPubMed
22.
go back to reference Gamo F, Sanz LM, Vidal J, De Cozar C, Alvarez E, Lavandera J, Vanderwall DE, Green DVS, Kumar V, Hasan S, Brown JR, Peishoff CE, Cardon LR, Garcia-bustos JF: Thousands of chemical starting points for antimalarial lead identification. Nature. 2010, 465: 305-310.CrossRefPubMed Gamo F, Sanz LM, Vidal J, De Cozar C, Alvarez E, Lavandera J, Vanderwall DE, Green DVS, Kumar V, Hasan S, Brown JR, Peishoff CE, Cardon LR, Garcia-bustos JF: Thousands of chemical starting points for antimalarial lead identification. Nature. 2010, 465: 305-310.CrossRefPubMed
23.
go back to reference Coteron JM, Marco M, Esquivias J, Deng X, White KL, White J, Koltun M, El Mazouni F, Kokkonda S, Katneni K, Bhamidipati R, Shackleford DM, Angulo-Barturen I, Ferrer SB, Jiménez-Díaz MB, Gamo F-J, Goldsmith EJ, Charman WN, Bathurst I, Floyd D, Matthews D, Burrows JN, Rathod PK, Charman SA, Phillips MA: Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem. 2011, 54: 5540-5561.PubMedCentralCrossRefPubMed Coteron JM, Marco M, Esquivias J, Deng X, White KL, White J, Koltun M, El Mazouni F, Kokkonda S, Katneni K, Bhamidipati R, Shackleford DM, Angulo-Barturen I, Ferrer SB, Jiménez-Díaz MB, Gamo F-J, Goldsmith EJ, Charman WN, Bathurst I, Floyd D, Matthews D, Burrows JN, Rathod PK, Charman SA, Phillips MA: Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem. 2011, 54: 5540-5561.PubMedCentralCrossRefPubMed
24.
go back to reference Phillips M a, Gujjar R, Malmquist N a, White J, El Mazouni F, Baldwin J, Rathod PK: Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J Med Chem. 2008, 51: 3649-3653.PubMedCentralCrossRefPubMed Phillips M a, Gujjar R, Malmquist N a, White J, El Mazouni F, Baldwin J, Rathod PK: Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J Med Chem. 2008, 51: 3649-3653.PubMedCentralCrossRefPubMed
25.
go back to reference Kato N, Sakata T, Breton G, Le Roch KG, Nagle A, Andersen C, Bursulaya B, Henson K, Johnson J, Kumar KA, Marr F, Mason D, McNamara C, Plouffe D, Ramachandran V, Spooner M, Tuntland T, Zhou Y, Peters EC, Chatterjee A, Schultz PG, Ward GE, Gray N, Harper J, Winzeler EA: Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nat Chem Biol. 2008, 4: 347-356.CrossRefPubMed Kato N, Sakata T, Breton G, Le Roch KG, Nagle A, Andersen C, Bursulaya B, Henson K, Johnson J, Kumar KA, Marr F, Mason D, McNamara C, Plouffe D, Ramachandran V, Spooner M, Tuntland T, Zhou Y, Peters EC, Chatterjee A, Schultz PG, Ward GE, Gray N, Harper J, Winzeler EA: Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nat Chem Biol. 2008, 4: 347-356.CrossRefPubMed
26.
go back to reference Hann MM: Molecular obesity, potency and other addictions in drug discovery. MedChemComm. 2011, 2: 349-CrossRef Hann MM: Molecular obesity, potency and other addictions in drug discovery. MedChemComm. 2011, 2: 349-CrossRef
28.
go back to reference Collot V, Schmitt M, Marwah P, Bourguignon JJ: Regiospecific functionalization of indole-2-carboxylates and diastereoselective preparation of the corresponding indolines. Heterocycles. 1999, 51: 2823-2847.CrossRef Collot V, Schmitt M, Marwah P, Bourguignon JJ: Regiospecific functionalization of indole-2-carboxylates and diastereoselective preparation of the corresponding indolines. Heterocycles. 1999, 51: 2823-2847.CrossRef
29.
go back to reference Yeung BKS, Zou B, Rottmann M, Lakshminarayana SB, Ang SH, Leong SY, Tan J, Wong J, Keller-maerki S, Fischli C, Goh A, Schmitt EK, Krastel P, Francotte E, Kuhen K, Plouffe D, Henson K, Wagner T, Winzeler EA, Petersen F, Brun R, Dartois V, Diagana TT, Keller TH: Spirotetrahydro β-Carbolines (Spiroindolones): A New Class of Potent and Orally Efficacious Compounds for the Treatment of Malaria. J Med Chem. 2010, 53: 5155-5164.CrossRefPubMed Yeung BKS, Zou B, Rottmann M, Lakshminarayana SB, Ang SH, Leong SY, Tan J, Wong J, Keller-maerki S, Fischli C, Goh A, Schmitt EK, Krastel P, Francotte E, Kuhen K, Plouffe D, Henson K, Wagner T, Winzeler EA, Petersen F, Brun R, Dartois V, Diagana TT, Keller TH: Spirotetrahydro β-Carbolines (Spiroindolones): A New Class of Potent and Orally Efficacious Compounds for the Treatment of Malaria. J Med Chem. 2010, 53: 5155-5164.CrossRefPubMed
30.
go back to reference Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT: Spiroindolones, a potent compound class for the treatment of malaria. Science. 2010, 329: 1175-1180.PubMedCentralCrossRefPubMed Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT: Spiroindolones, a potent compound class for the treatment of malaria. Science. 2010, 329: 1175-1180.PubMedCentralCrossRefPubMed
31.
go back to reference Van Linn ML, Cook JM: Mechanistic Studies on the Cis to Trans Epimerization of Trisubstituted 1,2,3,4-Tetrahydro-β-carbolines. J Org Chem. 2010, 75: 3587-3599.PubMedCentralCrossRefPubMed Van Linn ML, Cook JM: Mechanistic Studies on the Cis to Trans Epimerization of Trisubstituted 1,2,3,4-Tetrahydro-β-carbolines. J Org Chem. 2010, 75: 3587-3599.PubMedCentralCrossRefPubMed
33.
go back to reference Spangenberg T, Burrows JN, Kowalczyk P, McDonald S, Wells TNC, Willis P: The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One. 2013, 8: e62906-PubMedCentralCrossRefPubMed Spangenberg T, Burrows JN, Kowalczyk P, McDonald S, Wells TNC, Willis P: The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One. 2013, 8: e62906-PubMedCentralCrossRefPubMed
Metadata
Title
Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum
Authors
Vicky M Avery
Sridevi Bashyam
Jeremy N Burrows
Sandra Duffy
George Papadatos
Shyni Puthukkuti
Yuvaraj Sambandan
Shivendra Singh
Thomas Spangenberg
David Waterson
Paul Willis
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2014
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-13-190

Other articles of this Issue 1/2014

Malaria Journal 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.