Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2023

Open Access 24-06-2023 | SCLC | Review

Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer

Authors: Charles M. Rudin, Martin Reck, Melissa L. Johnson, Fiona Blackhall, Christine L. Hann, James Chih-Hsin Yang, Julie M. Bailis, Gwyn Bebb, Amanda Goldrick, John Umejiego, Luis Paz-Ares

Published in: Journal of Hematology & Oncology | Issue 1/2023

Login to get access

Abstract

Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma with a poor prognosis. Initial responses to standard-of-care chemo-immunotherapy are, unfortunately, followed by rapid disease recurrence in most patients. Current treatment options are limited, with no therapies specifically approved as third-line or beyond. Delta-like ligand 3 (DLL3), a Notch inhibitory ligand, is an attractive therapeutic target because it is overexpressed on the surface of SCLC cells with minimal to no expression on normal cells. Several DLL3-targeted therapies are being developed for the treatment of SCLC and other neuroendocrine carcinomas, including antibody-drug conjugates (ADCs), T-cell engager (TCE) molecules, and chimeric antigen receptor (CAR) therapies. First, we discuss the clinical experience with rovalpituzumab tesirine (Rova-T), a DLL3-targeting ADC, the development of which was halted due to a lack of efficacy in phase 3 studies, with a view to understanding the lessons that can be garnered for the rapidly evolving therapeutic landscape in SCLC. We then review preclinical and clinical data for several DLL3-targeting agents that are currently in development, including the TCE molecules—tarlatamab (formerly known as AMG 757), BI 764532, and HPN328—and the CAR T-cell therapy AMG 119. We conclude with a discussion of the future challenges and opportunities for DLL3-targeting therapies, including the utility of DLL3 as a biomarker for patient selection and disease progression, and the potential of rational combinatorial approaches that can enhance efficacy.
Appendix
Available only for authorised users
Literature
3.
go back to reference Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24:4539–44.PubMedCrossRef Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24:4539–44.PubMedCrossRef
4.
go back to reference Saltos A, Antonia S. Breaking the impasse: Advances in treatment of small cell lung cancer. Clin Chest Med. 2020;41:269–80.PubMedCrossRef Saltos A, Antonia S. Breaking the impasse: Advances in treatment of small cell lung cancer. Clin Chest Med. 2020;41:269–80.PubMedCrossRef
5.
go back to reference Dómine M, Moran T, Isla D, Marti JL, Sullivan I, Provencio M, et al. SEOM clinical guidelines for the treatment of small-cell lung cancer (SCLC) (2019). Clin Transl Oncol. 2020;22:245–55.PubMedCrossRef Dómine M, Moran T, Isla D, Marti JL, Sullivan I, Provencio M, et al. SEOM clinical guidelines for the treatment of small-cell lung cancer (SCLC) (2019). Clin Transl Oncol. 2020;22:245–55.PubMedCrossRef
6.
go back to reference Blackhall F, Jao K, Greillier L, Cho BC, Penkov K, Reguart N, et al. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-high SCLC: Results from the phase 3 TAHOE study. J Thorac Oncol. 2021;16:1547–58.PubMedCrossRef Blackhall F, Jao K, Greillier L, Cho BC, Penkov K, Reguart N, et al. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-high SCLC: Results from the phase 3 TAHOE study. J Thorac Oncol. 2021;16:1547–58.PubMedCrossRef
7.
go back to reference Dingemans A-M, Fruh M, Ardizzoni A, Besse B, Faivre-Finn C, Hendriks LE, et al. Small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021;32:839–53.PubMedCrossRef Dingemans A-M, Fruh M, Ardizzoni A, Besse B, Faivre-Finn C, Hendriks LE, et al. Small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021;32:839–53.PubMedCrossRef
8.
go back to reference Ganti AKP, Loo BW, Bassetti M, Blakely C, Chiang A, D’Amico TA, et al. Small cell lung cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19:1441–14464.PubMedPubMedCentralCrossRef Ganti AKP, Loo BW, Bassetti M, Blakely C, Chiang A, D’Amico TA, et al. Small cell lung cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19:1441–14464.PubMedPubMedCentralCrossRef
11.
go back to reference Klempner SJ, Fabrizio D, Bane S, Reinhart M, Peoples T, Ali SM, et al. Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence. Oncologist. 2020;25:e147–59.PubMedCrossRef Klempner SJ, Fabrizio D, Bane S, Reinhart M, Peoples T, Ali SM, et al. Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence. Oncologist. 2020;25:e147–59.PubMedCrossRef
12.
go back to reference Paz-Ares L, Chen Y, Reinmuth N, Hotta K, Trukhin D, Statsenko G, et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer: 3-year overall survival update from CASPIAN. ESMO Open. 2022;7:100408.PubMedPubMedCentralCrossRef Paz-Ares L, Chen Y, Reinmuth N, Hotta K, Trukhin D, Statsenko G, et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer: 3-year overall survival update from CASPIAN. ESMO Open. 2022;7:100408.PubMedPubMedCentralCrossRef
13.
go back to reference Rudin CM, Kim HR, Navarro A, Gottfried M, Peters S, Csoszi T, et al. First-line pembrolizumab or placebo combined with etoposide and platinum for ES-SCLC: KEYNOTE-604 long-term follow-up results. J Thorac Oncol. 2022;17:S33–4.CrossRef Rudin CM, Kim HR, Navarro A, Gottfried M, Peters S, Csoszi T, et al. First-line pembrolizumab or placebo combined with etoposide and platinum for ES-SCLC: KEYNOTE-604 long-term follow-up results. J Thorac Oncol. 2022;17:S33–4.CrossRef
14.
go back to reference Gay CM, Stewart CA, Park EM, Diao L, Groves SM, Heeke S, et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell. 2021;39:346-60 e7.PubMedPubMedCentralCrossRef Gay CM, Stewart CA, Park EM, Diao L, Groves SM, Heeke S, et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell. 2021;39:346-60 e7.PubMedPubMedCentralCrossRef
15.
go back to reference Tian Y, Zhai X, Han A, Zhu H, Yu J. Potential immune escape mechanisms underlying the distinct clinical outcome of immune checkpoint blockades in small cell lung cancer. J Hematol Oncol. 2019;12:67.PubMedPubMedCentralCrossRef Tian Y, Zhai X, Han A, Zhu H, Yu J. Potential immune escape mechanisms underlying the distinct clinical outcome of immune checkpoint blockades in small cell lung cancer. J Hematol Oncol. 2019;12:67.PubMedPubMedCentralCrossRef
16.
go back to reference Stewart CA, Gay CM, Xi Y, Sivajothi S, Sivakamasundari V, Fujimoto J, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Cancer. 2020;1:423–36.PubMedPubMedCentralCrossRef Stewart CA, Gay CM, Xi Y, Sivajothi S, Sivakamasundari V, Fujimoto J, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Cancer. 2020;1:423–36.PubMedPubMedCentralCrossRef
17.
go back to reference Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 2015;7:302ra136.PubMedPubMedCentralCrossRef Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 2015;7:302ra136.PubMedPubMedCentralCrossRef
18.
go back to reference Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK, et al. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep. 2016;16:1259–72.PubMedPubMedCentralCrossRef Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK, et al. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep. 2016;16:1259–72.PubMedPubMedCentralCrossRef
19.
go back to reference Augustyn A, Borromeo M, Wang T, Fujimoto J, Shao C, Dospoy PD, et al. ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proc Natl Acad Sci USA. 2014;111:14788–93.PubMedPubMedCentralCrossRef Augustyn A, Borromeo M, Wang T, Fujimoto J, Shao C, Dospoy PD, et al. ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proc Natl Acad Sci USA. 2014;111:14788–93.PubMedPubMedCentralCrossRef
21.
go back to reference Zhang H, Yang Y, Li X, Yuan X, Chu Q. Targeting the Notch signaling pathway and the Notch ligand, DLL3, in small cell lung cancer. Biomed Pharmacother. 2023;159:114248.PubMedCrossRef Zhang H, Yang Y, Li X, Yuan X, Chu Q. Targeting the Notch signaling pathway and the Notch ligand, DLL3, in small cell lung cancer. Biomed Pharmacother. 2023;159:114248.PubMedCrossRef
22.
go back to reference Furuta M, Kikuchi H, Shoji T, Takashima Y, Kikuchi E, Kikuchi J, et al. DLL3 regulates the migration and invasion of small cell lung cancer by modulating Snail. Cancer Sci. 2019;110:1599–608.PubMedPubMedCentralCrossRef Furuta M, Kikuchi H, Shoji T, Takashima Y, Kikuchi E, Kikuchi J, et al. DLL3 regulates the migration and invasion of small cell lung cancer by modulating Snail. Cancer Sci. 2019;110:1599–608.PubMedPubMedCentralCrossRef
23.
go back to reference Ogawa H, Sakai Y, Nishio W, Fujibayashi Y, Nishikubo M, Nishioka Y, et al. DLL3 expression is a predictive marker of sensitivity to adjuvant chemotherapy for pulmonary LCNEC. Thorac Cancer. 2020;11:2561–9.PubMedPubMedCentralCrossRef Ogawa H, Sakai Y, Nishio W, Fujibayashi Y, Nishikubo M, Nishioka Y, et al. DLL3 expression is a predictive marker of sensitivity to adjuvant chemotherapy for pulmonary LCNEC. Thorac Cancer. 2020;11:2561–9.PubMedPubMedCentralCrossRef
24.
go back to reference Huang J, Cao D, Sha J, Zhu X, Han S. DLL3 is regulated by LIN28B and miR-518d-5p and regulates cell proliferation, migration and chemotherapy response in advanced small cell lung cancer. Biochem Biophys Res Commun. 2019;514:853–60.PubMedCrossRef Huang J, Cao D, Sha J, Zhu X, Han S. DLL3 is regulated by LIN28B and miR-518d-5p and regulates cell proliferation, migration and chemotherapy response in advanced small cell lung cancer. Biochem Biophys Res Commun. 2019;514:853–60.PubMedCrossRef
25.
go back to reference Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL. Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet. 2011;20:905–16.PubMedCrossRef Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL. Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet. 2011;20:905–16.PubMedCrossRef
26.
go back to reference Geffers I, Serth K, Chapman G, Jaekel R, Schuster-Gossler K, Cordes R, et al. Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. J Cell Biol. 2007;178:465–76.PubMedPubMedCentralCrossRef Geffers I, Serth K, Chapman G, Jaekel R, Schuster-Gossler K, Cordes R, et al. Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. J Cell Biol. 2007;178:465–76.PubMedPubMedCentralCrossRef
27.
go back to reference Rojo F, Corassa M, Mavroudis D, Oz AB, Biesma B, Brcic L, et al. International real-world study of DLL3 expression in patients with small cell lung cancer. Lung Cancer. 2020;147:237–43.PubMedCrossRef Rojo F, Corassa M, Mavroudis D, Oz AB, Biesma B, Brcic L, et al. International real-world study of DLL3 expression in patients with small cell lung cancer. Lung Cancer. 2020;147:237–43.PubMedCrossRef
28.
go back to reference Kuempers C, Jagomast T, Krupar R, Paulsen FO, Heidel C, Ribbat-Idel J, et al. Delta-like protein 3 expression in paired chemonaive and chemorelapsed small cell lung cancer samples. Front Med. 2021;8:734901.CrossRef Kuempers C, Jagomast T, Krupar R, Paulsen FO, Heidel C, Ribbat-Idel J, et al. Delta-like protein 3 expression in paired chemonaive and chemorelapsed small cell lung cancer samples. Front Med. 2021;8:734901.CrossRef
29.
go back to reference Yao J, Bergsland E, Aggarwal R, Aparicio A, Beltran H, Crabtree JS, et al. DLL3 as an emerging target for the treatment of neuroendocrine neoplasms. Oncologist. 2022;27:940–51.PubMedPubMedCentralCrossRef Yao J, Bergsland E, Aggarwal R, Aparicio A, Beltran H, Crabtree JS, et al. DLL3 as an emerging target for the treatment of neuroendocrine neoplasms. Oncologist. 2022;27:940–51.PubMedPubMedCentralCrossRef
30.
go back to reference Li WQ, Guo HF, Li LY, Zhang YF, Cui JW. The promising role of antibody drug conjugate in cancer therapy: combining targeting ability with cytotoxicity effectively. Cancer Med. 2021;10:4677–96.PubMedPubMedCentralCrossRef Li WQ, Guo HF, Li LY, Zhang YF, Cui JW. The promising role of antibody drug conjugate in cancer therapy: combining targeting ability with cytotoxicity effectively. Cancer Med. 2021;10:4677–96.PubMedPubMedCentralCrossRef
31.
go back to reference Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017;18:42–51.PubMedCrossRef Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017;18:42–51.PubMedCrossRef
32.
go back to reference Xie H, Adjei AA. Antibody-drug conjugates for the therapy of thoracic malignancies. J Thorac Oncol. 2019;14:358–76.PubMedCrossRef Xie H, Adjei AA. Antibody-drug conjugates for the therapy of thoracic malignancies. J Thorac Oncol. 2019;14:358–76.PubMedCrossRef
33.
go back to reference Morgensztern D, Besse B, Greillier L, Santana-Davila R, Ready N, Hann CL, et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: Results from the phase II TRINITY study. Clin Cancer Res. 2019;25:6958–66.PubMedPubMedCentralCrossRef Morgensztern D, Besse B, Greillier L, Santana-Davila R, Ready N, Hann CL, et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: Results from the phase II TRINITY study. Clin Cancer Res. 2019;25:6958–66.PubMedPubMedCentralCrossRef
34.
go back to reference Malhotra J, Nikolinakos P, Leal T, Lehman J, Morgensztern D, Patel JD, et al. A phase 1–2 study of rovalpituzumab tesirine in combination with nivolumab plus or minus ipilimumab in patients with previously treated extensive-stage SCLC. J Thorac Oncol. 2021;16:1559–69.PubMedCrossRef Malhotra J, Nikolinakos P, Leal T, Lehman J, Morgensztern D, Patel JD, et al. A phase 1–2 study of rovalpituzumab tesirine in combination with nivolumab plus or minus ipilimumab in patients with previously treated extensive-stage SCLC. J Thorac Oncol. 2021;16:1559–69.PubMedCrossRef
35.
go back to reference Johnson ML, Zvirbule Z, Laktionov K, Helland A, Cho BC, Gutierrez V, et al. Rovalpituzumab tesirine as a maintenance therapy after first-line platinum-based chemotherapy in patients with extensive-stage-SCLC: results from the phase 3 MERU study. J Thorac Oncol. 2021;16:1570–81.PubMedCrossRef Johnson ML, Zvirbule Z, Laktionov K, Helland A, Cho BC, Gutierrez V, et al. Rovalpituzumab tesirine as a maintenance therapy after first-line platinum-based chemotherapy in patients with extensive-stage-SCLC: results from the phase 3 MERU study. J Thorac Oncol. 2021;16:1570–81.PubMedCrossRef
36.
go back to reference Kahl BS, Hamadani M, Radford J, Carlo-Stella C, Caimi P, Reid E, et al. A phase I study of ADCT-402 (Loncastuximab Tesirine), a novel pyrrolobenzodiazepine-based antibody-drug conjugate, in relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2019;25:6986–94.PubMedCrossRef Kahl BS, Hamadani M, Radford J, Carlo-Stella C, Caimi P, Reid E, et al. A phase I study of ADCT-402 (Loncastuximab Tesirine), a novel pyrrolobenzodiazepine-based antibody-drug conjugate, in relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2019;25:6986–94.PubMedCrossRef
37.
go back to reference Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117:1736–42.PubMedPubMedCentralCrossRef Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117:1736–42.PubMedPubMedCentralCrossRef
38.
go back to reference Schwartzberg L, Korytowsky B, Penrod J, et al (2018) Developing a Real-World 3L Comparator to CheckMate 032: Overall Survival (OS) in Patients with Small Cell Lung Cancer (SCLC). Poster presented at: 19th World Conference on Lung Cancer; September 23, 2018–September 26, Toronto, Canada Schwartzberg L, Korytowsky B, Penrod J, et al (2018) Developing a Real-World 3L Comparator to CheckMate 032: Overall Survival (OS) in Patients with Small Cell Lung Cancer (SCLC). Poster presented at: 19th World Conference on Lung Cancer; September 23, 2018–September 26, Toronto, Canada
44.
go back to reference Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015;93:290–6.PubMedCrossRef Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015;93:290–6.PubMedCrossRef
45.
go back to reference Viardot A, Locatelli F, Stieglmaier J, Zaman F, Jabbour E. Concepts in immuno-oncology: tackling B cell malignancies with CD19-directed bispecific T cell engager therapies. Ann Hematol. 2020;99:2215–29.PubMedPubMedCentralCrossRef Viardot A, Locatelli F, Stieglmaier J, Zaman F, Jabbour E. Concepts in immuno-oncology: tackling B cell malignancies with CD19-directed bispecific T cell engager therapies. Ann Hematol. 2020;99:2215–29.PubMedPubMedCentralCrossRef
46.
go back to reference Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14:75.PubMedPubMedCentralCrossRef Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14:75.PubMedPubMedCentralCrossRef
47.
go back to reference Arvedson T, Bailis JM, Urbig T, Stevens JL. Considerations for design, manufacture, and delivery for effective and safe T-cell engager therapies. Curr Opin Biotechnol. 2022;78:102799.PubMedCrossRef Arvedson T, Bailis JM, Urbig T, Stevens JL. Considerations for design, manufacture, and delivery for effective and safe T-cell engager therapies. Curr Opin Biotechnol. 2022;78:102799.PubMedCrossRef
48.
go back to reference Cornel AM, Mimpen IL, Nierkens S. MHC class I downregulation in cancer: Underlying mechanisms and potential targets for cancer immunotherapy. Cancers. 2020;12:1760.PubMedPubMedCentralCrossRef Cornel AM, Mimpen IL, Nierkens S. MHC class I downregulation in cancer: Underlying mechanisms and potential targets for cancer immunotherapy. Cancers. 2020;12:1760.PubMedPubMedCentralCrossRef
49.
go back to reference Singh K, Hotchkiss KM, Mohan AA, Reedy JL, Sampson JH, Khasraw M. For whom the T cells troll? Bispecific T-cell engagers in glioblastoma. J Immunother Cancer. 2021;9:e003679.PubMedPubMedCentralCrossRef Singh K, Hotchkiss KM, Mohan AA, Reedy JL, Sampson JH, Khasraw M. For whom the T cells troll? Bispecific T-cell engagers in glioblastoma. J Immunother Cancer. 2021;9:e003679.PubMedPubMedCentralCrossRef
50.
go back to reference Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer. 2002;100:690–7.PubMedCrossRef Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer. 2002;100:690–7.PubMedCrossRef
51.
go back to reference Deegen P, Thomas O, Nolan-Stevaux O, Li S, Wahl J, Bogner P, et al. The PSMA-targeting half-life extended BiTE therapy AMG 160 has potent antitumor activity in preclinical models of metastatic castration-resistant prostate cancer. Clin Cancer Res. 2021;27:2928–37.PubMedCrossRef Deegen P, Thomas O, Nolan-Stevaux O, Li S, Wahl J, Bogner P, et al. The PSMA-targeting half-life extended BiTE therapy AMG 160 has potent antitumor activity in preclinical models of metastatic castration-resistant prostate cancer. Clin Cancer Res. 2021;27:2928–37.PubMedCrossRef
52.
go back to reference Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43:763–71.PubMedCrossRef Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43:763–71.PubMedCrossRef
53.
go back to reference Haas C, Krinner E, Brischwein K, Hoffmann P, Lutterbuse R, Schlereth B, et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology. 2009;214:441–53.PubMedCrossRef Haas C, Krinner E, Brischwein K, Hoffmann P, Lutterbuse R, Schlereth B, et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology. 2009;214:441–53.PubMedCrossRef
54.
go back to reference Klinger M, Benjamin J, Kischel R, Stienen S, Zugmaier G. Harnessing T cells to fight cancer with BiTE(R) antibody constructs–past developments and future directions. Immunol Rev. 2016;270:193–208.PubMedCrossRef Klinger M, Benjamin J, Kischel R, Stienen S, Zugmaier G. Harnessing T cells to fight cancer with BiTE(R) antibody constructs–past developments and future directions. Immunol Rev. 2016;270:193–208.PubMedCrossRef
55.
go back to reference Hipp S, Voynov V, Drobits-Handl B, Giragossian C, Trapani F, Nixon AE, et al. A bispecific DLL3/CD3 IgG-like T-cell engaging antibody induces antitumor responses in small cell lung cancer. Clin Cancer Res. 2020;26:5258–68.PubMedCrossRef Hipp S, Voynov V, Drobits-Handl B, Giragossian C, Trapani F, Nixon AE, et al. A bispecific DLL3/CD3 IgG-like T-cell engaging antibody induces antitumor responses in small cell lung cancer. Clin Cancer Res. 2020;26:5258–68.PubMedCrossRef
56.
go back to reference Austin RJ, Lemon BD, Aaron WH, Barath M, Culp PA, DuBridge RB, et al. TriTACs, a novel class of T-cell-engaging protein constructs designed for the treatment of solid tumors. Mol Cancer Ther. 2021;20:109–20.PubMedCrossRef Austin RJ, Lemon BD, Aaron WH, Barath M, Culp PA, DuBridge RB, et al. TriTACs, a novel class of T-cell-engaging protein constructs designed for the treatment of solid tumors. Mol Cancer Ther. 2021;20:109–20.PubMedCrossRef
57.
go back to reference Wesche H, Aaron W, Austin W, et al. TriTACs are novel T cell-engaging therapeutic proteins optimized for treatment of solid tumors and long serum half-life. Poster presented at: American Association for Cancer Research Annual Meeting; 2018, Chicago, USA Wesche H, Aaron W, Austin W, et al. TriTACs are novel T cell-engaging therapeutic proteins optimized for treatment of solid tumors and long serum half-life. Poster presented at: American Association for Cancer Research Annual Meeting; 2018, Chicago, USA
58.
go back to reference Yang L, Li R, Jiang J, et al. QLS31904: an anti-DLL3/CD3 bispecific antibody for T cell immunotherapy of small cell lung cancer. Poster presented at: American Association for Cancer Research Annual Meeting; 2022, New Orleans, USA Yang L, Li R, Jiang J, et al. QLS31904: an anti-DLL3/CD3 bispecific antibody for T cell immunotherapy of small cell lung cancer. Poster presented at: American Association for Cancer Research Annual Meeting; 2022, New Orleans, USA
59.
go back to reference Giffin MJ, Cooke K, Lobenhofer EK, Estrada J, Zhan J, Deegen P, et al. AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer. Clin Cancer Res. 2021;27:1526–37.PubMedCrossRef Giffin MJ, Cooke K, Lobenhofer EK, Estrada J, Zhan J, Deegen P, et al. AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer. Clin Cancer Res. 2021;27:1526–37.PubMedCrossRef
60.
go back to reference Lobenhofer EK, Werner J, Giffin MJ, Engwall M, Davies R, Homann O, et al. Nonclinical safety assessment of AMG 757, a DLL3 bispecific T cell engager, in the cynomolgus monkey. J Thorac Oncol. 2019;14:S541.CrossRef Lobenhofer EK, Werner J, Giffin MJ, Engwall M, Davies R, Homann O, et al. Nonclinical safety assessment of AMG 757, a DLL3 bispecific T cell engager, in the cynomolgus monkey. J Thorac Oncol. 2019;14:S541.CrossRef
61.
go back to reference Aaron W, Austin R, Barath M, et al. HPN328: an anti-DLL3 T cell engager for treatment of small cell lung cancer. Poster presented at: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2019 October 26–30; Boston, USA Aaron W, Austin R, Barath M, et al. HPN328: an anti-DLL3 T cell engager for treatment of small cell lung cancer. Poster presented at: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2019 October 26–30; Boston, USA
62.
go back to reference Aaron WH, Austin R, Barath M, Calihan E, Cremin M, Evans T et al. HPN328: an anti-DLL3 T cell engager for treatment of small cell lung cancer. Abstract C033. Presented at the Proceedings of the AACR-NCI-EORTC InternationalConference on Molecular Targets and CancerTherapeutics; 2019 Oct 26–30; Boston, MA.Philadelphia, USA. Mol Cancer Ther. 18 (12 Suppl) Aaron WH, Austin R, Barath M, Calihan E, Cremin M, Evans T et al. HPN328: an anti-DLL3 T cell engager for treatment of small cell lung cancer. Abstract C033. Presented at the Proceedings of the AACR-NCI-EORTC InternationalConference on Molecular Targets and CancerTherapeutics; 2019 Oct 26–30; Boston, MA.Philadelphia, USA. Mol Cancer Ther. 18 (12 Suppl)
63.
go back to reference Paz-Ares L, Champiat S, Lai WV, Izumi H, Govindan R, Boyer M, et al. Tarlatamab, a first-in-class DLL3-targeted bispecific T-cell engager, in recurrent small cell lung cancer: an open-label, phase I study. J Clin Oncol. 2023:JCO2202823. https://doi.org/10.1200/JCO.22.02823 Paz-Ares L, Champiat S, Lai WV, Izumi H, Govindan R, Boyer M, et al. Tarlatamab, a first-in-class DLL3-targeted bispecific T-cell engager, in recurrent small cell lung cancer: an open-label, phase I study. J Clin Oncol. 2023:JCO2202823. https://​doi.​org/​10.​1200/​JCO.​22.​02823
64.
go back to reference Champiat S, Boyer M, Paz-Ares L, et al. Characterizing cytokine release syndrome (CRS) in phase 1 study of DLL3-targeted T-cell engager tarlatamab in small-cell lung cancer (SCLC). Poster presented at: The ESMO Immuno-Oncology Congress; 2022 Dec 7–9; Geneva, Switzerland Champiat S, Boyer M, Paz-Ares L, et al. Characterizing cytokine release syndrome (CRS) in phase 1 study of DLL3-targeted T-cell engager tarlatamab in small-cell lung cancer (SCLC). Poster presented at: The ESMO Immuno-Oncology Congress; 2022 Dec 7–9; Geneva, Switzerland
65.
go back to reference Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlosser HA, Schlaak M, et al. Cytokine release syndrome. J Immunother. Cancer. 2018;6:56. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlosser HA, Schlaak M, et al. Cytokine release syndrome. J Immunother. Cancer. 2018;6:56.
66.
go back to reference Li J, Piskol R, Ybarra R, Chen YJ, Li J, Slaga D, et al. CD3 bispecific antibody-induced cytokine release is dispensable for cytotoxic T cell activity. Sci Transl Med. 2019;11:eaax8861.PubMedCrossRef Li J, Piskol R, Ybarra R, Chen YJ, Li J, Slaga D, et al. CD3 bispecific antibody-induced cytokine release is dispensable for cytotoxic T cell activity. Sci Transl Med. 2019;11:eaax8861.PubMedCrossRef
67.
68.
go back to reference Budde LE, Sehn LH, Matasar M, Schuster SJ, Assouline S, Giri P, et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 2022;23:1055–65.PubMedCrossRef Budde LE, Sehn LH, Matasar M, Schuster SJ, Assouline S, Giri P, et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 2022;23:1055–65.PubMedCrossRef
69.
go back to reference Moreau P, Garfall AL, van de Donk N, Nahi H, San-Miguel JF, Oriol A, et al. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med. 2022;387:495–505.PubMedCrossRef Moreau P, Garfall AL, van de Donk N, Nahi H, San-Miguel JF, Oriol A, et al. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med. 2022;387:495–505.PubMedCrossRef
70.
go back to reference Molema G, Tervaert JW, Kroesen BJ, Helfrich W, Meijer DK, de Leij LF. CD3 directed bispecific antibodies induce increased lymphocyte-endothelial cell interactions in vitro. Br J Cancer. 2000;82:472–9.PubMedPubMedCentralCrossRef Molema G, Tervaert JW, Kroesen BJ, Helfrich W, Meijer DK, de Leij LF. CD3 directed bispecific antibodies induce increased lymphocyte-endothelial cell interactions in vitro. Br J Cancer. 2000;82:472–9.PubMedPubMedCentralCrossRef
71.
go back to reference Klinger M, Zugmaier G, Nägele V, Goebeler ME, Brandl C, Stelljes M, et al. Adhesion of T cells to endothelial cells facilitates blinatumomab-associated neurologic adverse events. Cancer Res. 2020;80:91–101.PubMedCrossRef Klinger M, Zugmaier G, Nägele V, Goebeler ME, Brandl C, Stelljes M, et al. Adhesion of T cells to endothelial cells facilitates blinatumomab-associated neurologic adverse events. Cancer Res. 2020;80:91–101.PubMedCrossRef
72.
go back to reference Johnson ML, Dy GK, Mamdani H, et al. Interim results of an ongoing Phase 1/2 study of HPN328, a tri-specific half-life extended DLL3-targeting T-cell engager, in patients with small cell lung cancer and other neuroendocrine cancers. Poster presented at: American Society of Clinical Oncology Annual Meeting; 2022 June 3–7; Chicago, USA Johnson ML, Dy GK, Mamdani H, et al. Interim results of an ongoing Phase 1/2 study of HPN328, a tri-specific half-life extended DLL3-targeting T-cell engager, in patients with small cell lung cancer and other neuroendocrine cancers. Poster presented at: American Society of Clinical Oncology Annual Meeting; 2022 June 3–7; Chicago, USA
73.
go back to reference Giffin M, Cooke K, Lobenhofer E, et al. P3.12-03 Targeting DLL3 with AMG 757, a BiTE® antibody construct, and AMG 119, a CAR-T, for the treatment of SCLC. J Thorac Oncol. 2018;13:S971.CrossRef Giffin M, Cooke K, Lobenhofer E, et al. P3.12-03 Targeting DLL3 with AMG 757, a BiTE® antibody construct, and AMG 119, a CAR-T, for the treatment of SCLC. J Thorac Oncol. 2018;13:S971.CrossRef
74.
go back to reference Byers LA, Heymach JV, Gibbons DL, et al. A phase 1 study of AMG 119, a DLL3-targeting, chimeric antigen receptor (CAR) T-cell therapy, in relapsed/refractory small cell lung cancer (SCLC). Poster presented at: The Society for Immunotherapy of Cancer’s 37th Annual Meeting; 2022 November 8–12; Boston, USA Byers LA, Heymach JV, Gibbons DL, et al. A phase 1 study of AMG 119, a DLL3-targeting, chimeric antigen receptor (CAR) T-cell therapy, in relapsed/refractory small cell lung cancer (SCLC). Poster presented at: The Society for Immunotherapy of Cancer’s 37th Annual Meeting; 2022 November 8–12; Boston, USA
75.
go back to reference Montagner IM, Penna A, Fracasso G, Carpanese D, Dalla Pieta A, Barbieri V, et al. Anti-PSMA CAR-engineered NK-92 Cells: An off-the-shelf cell therapy for prostate cancer. Cells. 2020;9:1382.PubMedPubMedCentralCrossRef Montagner IM, Penna A, Fracasso G, Carpanese D, Dalla Pieta A, Barbieri V, et al. Anti-PSMA CAR-engineered NK-92 Cells: An off-the-shelf cell therapy for prostate cancer. Cells. 2020;9:1382.PubMedPubMedCentralCrossRef
76.
go back to reference Liu M, Huang W, Guo Y, Zhou Y, Zhi C, Chen J, et al. CAR NK-92 cells targeting DLL3 kill effectively small cell lung cancer cells in vitro and in vivo. J Leukoc Biol. 2022;112:901–11.PubMedCrossRef Liu M, Huang W, Guo Y, Zhou Y, Zhi C, Chen J, et al. CAR NK-92 cells targeting DLL3 kill effectively small cell lung cancer cells in vitro and in vivo. J Leukoc Biol. 2022;112:901–11.PubMedCrossRef
78.
go back to reference Qin A, Kalemkerian GP. Treatment options for relapsed small-cell lung cancer: What progress have we made? J Oncol Pract. 2018;14:369–70.PubMedCrossRef Qin A, Kalemkerian GP. Treatment options for relapsed small-cell lung cancer: What progress have we made? J Oncol Pract. 2018;14:369–70.PubMedCrossRef
79.
go back to reference Trigo J, Subbiah V, Besse B, Moreno V, Lopez R, Sala MA, et al. Lurbinectedin as second-line treatment for patients with small-cell lung cancer: a single-arm, open-label, phase 2 basket trial. Lancet Oncol. 2020;21:645–54.PubMedCrossRef Trigo J, Subbiah V, Besse B, Moreno V, Lopez R, Sala MA, et al. Lurbinectedin as second-line treatment for patients with small-cell lung cancer: a single-arm, open-label, phase 2 basket trial. Lancet Oncol. 2020;21:645–54.PubMedCrossRef
80.
go back to reference Mejstríková E, Hrusak O, Borowitz MJ, Whitlock JA, Brethon B, Trippett TM, et al. CD19-negative relapse of pediatric B-cell precursor acute lymphoblastic leukemia following blinatumomab treatment. Blood Cancer J. 2017;7:659.PubMedPubMedCentralCrossRef Mejstríková E, Hrusak O, Borowitz MJ, Whitlock JA, Brethon B, Trippett TM, et al. CD19-negative relapse of pediatric B-cell precursor acute lymphoblastic leukemia following blinatumomab treatment. Blood Cancer J. 2017;7:659.PubMedPubMedCentralCrossRef
81.
go back to reference Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017;31:2181–90.PubMedPubMedCentralCrossRef Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017;31:2181–90.PubMedPubMedCentralCrossRef
82.
go back to reference Zhou Y, Penny HL, Kroenke MA, Bautista B, Hainline K, Chea LS, et al. Immunogenicity assessment of bispecific antibody-based immunotherapy in oncology. J Immunother Cancer. 2022; 10. Zhou Y, Penny HL, Kroenke MA, Bautista B, Hainline K, Chea LS, et al. Immunogenicity assessment of bispecific antibody-based immunotherapy in oncology. J Immunother Cancer. 2022; 10.
83.
go back to reference Gerber H-P, Sapra P, Loganzo F, May C. Combining antibody-drug conjugates and immune-mediated cancer therapy: What to expect? Biochem Pharmacol. 2016;102:1–6.PubMedCrossRef Gerber H-P, Sapra P, Loganzo F, May C. Combining antibody-drug conjugates and immune-mediated cancer therapy: What to expect? Biochem Pharmacol. 2016;102:1–6.PubMedCrossRef
84.
go back to reference Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.PubMedCrossRef Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.PubMedCrossRef
85.
86.
87.
go back to reference Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7:93.PubMedPubMedCentralCrossRef Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7:93.PubMedPubMedCentralCrossRef
88.
go back to reference Rath B, Plangger A, Krenbek D, Hochmair M, Stickler S, Tretter V, et al. Rovalpituzumab tesirine resistance: analysis of a corresponding small cell lung cancer and circulating tumor cell line pair. Anticancer Drugs. 2022;33:300–7.PubMedCrossRef Rath B, Plangger A, Krenbek D, Hochmair M, Stickler S, Tretter V, et al. Rovalpituzumab tesirine resistance: analysis of a corresponding small cell lung cancer and circulating tumor cell line pair. Anticancer Drugs. 2022;33:300–7.PubMedCrossRef
89.
go back to reference Sharma SK, Pourat J, Abdel-Atti D, Carlin SD, Piersigilli A, Bankovich AJ, et al. Noninvasive interrogation of DLL3 expression in metastatic small cell lung cancer. Cancer Res. 2017;77:3931–41.PubMedPubMedCentralCrossRef Sharma SK, Pourat J, Abdel-Atti D, Carlin SD, Piersigilli A, Bankovich AJ, et al. Noninvasive interrogation of DLL3 expression in metastatic small cell lung cancer. Cancer Res. 2017;77:3931–41.PubMedPubMedCentralCrossRef
90.
go back to reference Obermayr E, Agreiter C, Schuster E, Fabikan H, Weinlinger C, Baluchova K, et al. Molecular characterization of circulating tumor cells enriched by a microfluidic platform in patients with small-cell lung cancer. Cells. 2019;8:880.PubMedPubMedCentralCrossRef Obermayr E, Agreiter C, Schuster E, Fabikan H, Weinlinger C, Baluchova K, et al. Molecular characterization of circulating tumor cells enriched by a microfluidic platform in patients with small-cell lung cancer. Cells. 2019;8:880.PubMedPubMedCentralCrossRef
91.
go back to reference Muscarella LA, Mazza T, Fabrizio FP, Sparaneo A, D’Alessandro V, Tancredi A, et al. Neuroendocrine-related circulating transcripts in small-cell lung cancers: detection methods and future perspectives. Cancers. 2021;13:1339.PubMedPubMedCentralCrossRef Muscarella LA, Mazza T, Fabrizio FP, Sparaneo A, D’Alessandro V, Tancredi A, et al. Neuroendocrine-related circulating transcripts in small-cell lung cancers: detection methods and future perspectives. Cancers. 2021;13:1339.PubMedPubMedCentralCrossRef
92.
go back to reference Messaritakis I, Nikolaou M, Koinis F, Politaki E, Koutsopoulos A, Lagoudaki E, et al. Characterization of DLL3-positive circulating tumor cells (CTCs) in patients with small cell lung cancer (SCLC) and evaluation of their clinical relevance during front-line treatment. Lung Cancer. 2019;135:33–9.PubMedCrossRef Messaritakis I, Nikolaou M, Koinis F, Politaki E, Koutsopoulos A, Lagoudaki E, et al. Characterization of DLL3-positive circulating tumor cells (CTCs) in patients with small cell lung cancer (SCLC) and evaluation of their clinical relevance during front-line treatment. Lung Cancer. 2019;135:33–9.PubMedCrossRef
93.
go back to reference Chemi F, Pearce SP, Clipson A, Hill SM, Conway AM, Richardson SA, et al. cfDNA methylome profiling for detection and subtyping of small cell lung cancers. Nat Cancer. 2022;3:1260–70.PubMedPubMedCentralCrossRef Chemi F, Pearce SP, Clipson A, Hill SM, Conway AM, Richardson SA, et al. cfDNA methylome profiling for detection and subtyping of small cell lung cancers. Nat Cancer. 2022;3:1260–70.PubMedPubMedCentralCrossRef
94.
go back to reference Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19:289–97.PubMedPubMedCentralCrossRef Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19:289–97.PubMedPubMedCentralCrossRef
95.
go back to reference Baine MK, Hsieh MS, Lai WV, Egger JV, Jungbluth AA, Daneshbod Y, et al. SCLC subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1: A comprehensive immunohistochemical and histopathologic characterization. J Thorac Oncol. 2020;15:1823–35.PubMedPubMedCentralCrossRef Baine MK, Hsieh MS, Lai WV, Egger JV, Jungbluth AA, Daneshbod Y, et al. SCLC subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1: A comprehensive immunohistochemical and histopathologic characterization. J Thorac Oncol. 2020;15:1823–35.PubMedPubMedCentralCrossRef
97.
go back to reference Caeser R, Egger JV, Chavan S, Socci ND, Jones CB, Kombak FE, et al. Genomic and transcriptomic analysis of a library of small cell lung cancer patient-derived xenografts. Nat Commun. 2022;13:2144.PubMedPubMedCentralCrossRef Caeser R, Egger JV, Chavan S, Socci ND, Jones CB, Kombak FE, et al. Genomic and transcriptomic analysis of a library of small cell lung cancer patient-derived xenografts. Nat Commun. 2022;13:2144.PubMedPubMedCentralCrossRef
98.
go back to reference Vitorino P, Chuang CH, Iannello A, Zhao X, Anderson W, Ferrando R, et al. Rova-T enhances the anti-tumor activity of anti-PD1 in a murine model of small cell lung cancer with endogenous Dll3 expression. Transl Oncol. 2021;14:100883.PubMedCrossRef Vitorino P, Chuang CH, Iannello A, Zhao X, Anderson W, Ferrando R, et al. Rova-T enhances the anti-tumor activity of anti-PD1 in a murine model of small cell lung cancer with endogenous Dll3 expression. Transl Oncol. 2021;14:100883.PubMedCrossRef
99.
go back to reference Ready NE, Ott PA, Hellmann MD, Zugazagoitia J, Hann CL, de Braud F, et al. Nivolumab monotherapy and nivolumab plus ipilimumab in recurrent small cell lung cancer: results from the CheckMate 032 randomized cohort. J Thorac Oncol. 2020;15:426–35.PubMedCrossRef Ready NE, Ott PA, Hellmann MD, Zugazagoitia J, Hann CL, de Braud F, et al. Nivolumab monotherapy and nivolumab plus ipilimumab in recurrent small cell lung cancer: results from the CheckMate 032 randomized cohort. J Thorac Oncol. 2020;15:426–35.PubMedCrossRef
100.
go back to reference Kobold S, Pantelyushin S, Rataj F, Vom Berg J. Rationale for combining bispecific T cell activating antibodies with checkpoint blockade for cancer therapy. Front Oncol. 2018;8:285.PubMedPubMedCentralCrossRef Kobold S, Pantelyushin S, Rataj F, Vom Berg J. Rationale for combining bispecific T cell activating antibodies with checkpoint blockade for cancer therapy. Front Oncol. 2018;8:285.PubMedPubMedCentralCrossRef
101.
go back to reference Dowlati A, Byers L, Johnson M, Aljumaily R, Prenen H, Zhang A, et al. Phase 1b study of AMG 757, a half-life extended bispecific T cell engager (HLE BiTE®) immuno-oncology therapy, combined with AMG 404, an anti-PD-1 antibody, in patients with small cell lung cancer (SCLC). Poster presented at the European Society for Medical Oncology Congress; 2021 September 16–21; Virtual Dowlati A, Byers L, Johnson M, Aljumaily R, Prenen H, Zhang A, et al. Phase 1b study of AMG 757, a half-life extended bispecific T cell engager (HLE BiTE®) immuno-oncology therapy, combined with AMG 404, an anti-PD-1 antibody, in patients with small cell lung cancer (SCLC). Poster presented at the European Society for Medical Oncology Congress; 2021 September 16–21; Virtual
102.
go back to reference Chen X, Amar N, Zhu Y, Wang C, Xia C, Yang X, et al. Combined DLL3-targeted bispecific antibody with PD-1 inhibition is efficient to suppress small cell lung cancer growth. J Immunother Cancer. 2020;8:e000785.PubMedPubMedCentralCrossRef Chen X, Amar N, Zhu Y, Wang C, Xia C, Yang X, et al. Combined DLL3-targeted bispecific antibody with PD-1 inhibition is efficient to suppress small cell lung cancer growth. J Immunother Cancer. 2020;8:e000785.PubMedPubMedCentralCrossRef
103.
go back to reference Truong NTH, Gargett T, Brown MP, Ebert LM. Effects of chemotherapy agents on circulating leukocyte populations: Potential implications for the success of CAR-T cell therapies. Cancers. 2021;13:2225.PubMedPubMedCentralCrossRef Truong NTH, Gargett T, Brown MP, Ebert LM. Effects of chemotherapy agents on circulating leukocyte populations: Potential implications for the success of CAR-T cell therapies. Cancers. 2021;13:2225.PubMedPubMedCentralCrossRef
104.
go back to reference Xu J, Wang Y, Shi J, Liu J, Li Q, Chen L. Combination therapy: a feasibility strategy for CAR-T cell therapy in the treatment of solid tumors. Oncol Lett. 2018;16:2063–70.PubMedPubMedCentral Xu J, Wang Y, Shi J, Liu J, Li Q, Chen L. Combination therapy: a feasibility strategy for CAR-T cell therapy in the treatment of solid tumors. Oncol Lett. 2018;16:2063–70.PubMedPubMedCentral
105.
go back to reference Hann CL, Burns TF, Dowlati A, Morgensztern D, Ward PJ, Koch MM, et al. A phase 1 study evaluating rovalpituzumab tesirine (Rova-T) in frontline treatment of patients with extensive-stage small cell lung cancer. J Thorac Oncol. 2021;16:1582–8.PubMedCrossRef Hann CL, Burns TF, Dowlati A, Morgensztern D, Ward PJ, Koch MM, et al. A phase 1 study evaluating rovalpituzumab tesirine (Rova-T) in frontline treatment of patients with extensive-stage small cell lung cancer. J Thorac Oncol. 2021;16:1582–8.PubMedCrossRef
106.
go back to reference Hermans BCM, Derks JL, Thunnissen E, van Suylen RJ, den Bakker MA, Groen HJM, et al. DLL3 expression in large cell neuroendocrine carcinoma (LCNEC) and association with molecular subtypes and neuroendocrine profile. Lung Cancer. 2019;138:102–8.PubMedCrossRef Hermans BCM, Derks JL, Thunnissen E, van Suylen RJ, den Bakker MA, Groen HJM, et al. DLL3 expression in large cell neuroendocrine carcinoma (LCNEC) and association with molecular subtypes and neuroendocrine profile. Lung Cancer. 2019;138:102–8.PubMedCrossRef
107.
go back to reference Puca L, Gavyert K, Sailer V, Conteduca V, Dardenne E, Sigouros M, et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med. 2019;11:eaav0891.PubMedPubMedCentralCrossRef Puca L, Gavyert K, Sailer V, Conteduca V, Dardenne E, Sigouros M, et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med. 2019;11:eaav0891.PubMedPubMedCentralCrossRef
108.
go back to reference Koshkin VS, Garcia JA, Reynolds J, Elson P, Magi-Galluzzi C, McKenney JK, et al. Transcriptomic and protein analysis of small-cell bladder cancer (SCBC) identifies prognostic biomarkers and DLL3 as a relevant therapeutic target. Clin Cancer Res. 2019;25:210–21.PubMedCrossRef Koshkin VS, Garcia JA, Reynolds J, Elson P, Magi-Galluzzi C, McKenney JK, et al. Transcriptomic and protein analysis of small-cell bladder cancer (SCBC) identifies prognostic biomarkers and DLL3 as a relevant therapeutic target. Clin Cancer Res. 2019;25:210–21.PubMedCrossRef
109.
go back to reference Mansfield AS, Hong DS, Hann CL, Farago AF, Beltran H, Waqar SN, et al. A phase I/II study of rovalpituzumab tesirine in delta-like 3-expressing advanced solid tumors. NPJ Precis Oncol. 2021;5:74.PubMedPubMedCentralCrossRef Mansfield AS, Hong DS, Hann CL, Farago AF, Beltran H, Waqar SN, et al. A phase I/II study of rovalpituzumab tesirine in delta-like 3-expressing advanced solid tumors. NPJ Precis Oncol. 2021;5:74.PubMedPubMedCentralCrossRef
110.
go back to reference Wermke M, Felip E, Gambardella V, Kuboki Y, Morgensztern D, Hamed ZO, et al. Phase I trial of the DLL3/CD3 bispecific T-cell engager BI 764532 in DLL3-positive small-cell lung cancer and neuroendocrine carcinomas. Future Oncol. 2022;18:2639–49.PubMedCrossRef Wermke M, Felip E, Gambardella V, Kuboki Y, Morgensztern D, Hamed ZO, et al. Phase I trial of the DLL3/CD3 bispecific T-cell engager BI 764532 in DLL3-positive small-cell lung cancer and neuroendocrine carcinomas. Future Oncol. 2022;18:2639–49.PubMedCrossRef
111.
go back to reference Coats S, Williams M, Kebble B, Dixit R, Tseng L, Yao NS, et al. Antibody-drug conjugates: Future directions in clinical and translational strategies to improve the therapeutic Index. Clin Cancer Res. 2019;25:5441–8.PubMedCrossRef Coats S, Williams M, Kebble B, Dixit R, Tseng L, Yao NS, et al. Antibody-drug conjugates: Future directions in clinical and translational strategies to improve the therapeutic Index. Clin Cancer Res. 2019;25:5441–8.PubMedCrossRef
112.
go back to reference Yang L, Li R, Jiang J, Qian H, Ge H, Lu T, et al. Abstract 5550: QLS31904: An anti-DLL3/CD3 bispecific antibody for T cell immunotherapy of small cell lung cancer. Cancer Research. 2022;82(12_supplement):5550.CrossRef Yang L, Li R, Jiang J, Qian H, Ge H, Lu T, et al. Abstract 5550: QLS31904: An anti-DLL3/CD3 bispecific antibody for T cell immunotherapy of small cell lung cancer. Cancer Research. 2022;82(12_supplement):5550.CrossRef
113.
go back to reference Morgensztern D, Johnson M, Rudin CM, Rossi M, Lazarov M, Brickman D, et al. SC-002 in patients with relapsed or refractory small cell lung cancer and large cell neuroendocrine carcinoma: phase 1 study. Lung Cancer. 2020;145:126–31.PubMedCrossRef Morgensztern D, Johnson M, Rudin CM, Rossi M, Lazarov M, Brickman D, et al. SC-002 in patients with relapsed or refractory small cell lung cancer and large cell neuroendocrine carcinoma: phase 1 study. Lung Cancer. 2020;145:126–31.PubMedCrossRef
114.
go back to reference Lobenhofer EK, Werner J, Giffin MJ, Engwall R, Homann O, Lafleur MA, Moffat GJ. Nonclinical safety assessment of AMG 757, a DLL3 bispecific T cell engager, in the cynomolgus monkey. Poster presented at: World Conference on Lung Cancer; 2019; Barcelona, Spain Lobenhofer EK, Werner J, Giffin MJ, Engwall R, Homann O, Lafleur MA, Moffat GJ. Nonclinical safety assessment of AMG 757, a DLL3 bispecific T cell engager, in the cynomolgus monkey. Poster presented at: World Conference on Lung Cancer; 2019; Barcelona, Spain
Metadata
Title
Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer
Authors
Charles M. Rudin
Martin Reck
Melissa L. Johnson
Fiona Blackhall
Christine L. Hann
James Chih-Hsin Yang
Julie M. Bailis
Gwyn Bebb
Amanda Goldrick
John Umejiego
Luis Paz-Ares
Publication date
24-06-2023
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2023
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-023-01464-y

Other articles of this Issue 1/2023

Journal of Hematology & Oncology 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine