Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Schwannoma | Research

Convolutional neural network-based magnetic resonance image differentiation of filum terminale ependymomas from schwannomas

Authors: Zhaowen Gu, Wenli Dai, Jiarui Chen, Qixuan Jiang, Weiwei Lin, Qiangwei Wang, Jingyin Chen, Chi Gu, Jia Li, Guangyu Ying, Yongjian Zhu

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Purpose

Preoperative diagnosis of filum terminale ependymomas (FTEs) versus schwannomas is difficult but essential for surgical planning and prognostic assessment. With the advancement of deep-learning approaches based on convolutional neural networks (CNNs), the aim of this study was to determine whether CNN-based interpretation of magnetic resonance (MR) images of these two tumours could be achieved.

Methods

Contrast-enhanced MRI data from 50 patients with primary FTE and 50 schwannomas in the lumbosacral spinal canal were retrospectively collected and used as training and internal validation datasets. The diagnostic accuracy of MRI was determined by consistency with postoperative histopathological examination. T1-weighted (T1-WI), T2-weighted (T2-WI) and contrast-enhanced T1-weighted (CE-T1) MR images of the sagittal plane containing the tumour mass were selected for analysis. For each sequence, patient MRI data were randomly allocated to 5 groups that further underwent fivefold cross-validation to evaluate the diagnostic efficacy of the CNN models. An additional 34 pairs of cases were used as an external test dataset to validate the CNN classifiers.

Results

After comparing multiple backbone CNN models, we developed a diagnostic system using Inception-v3. In the external test dataset, the per-examination combined sensitivities were 0.78 (0.71–0.84, 95% CI) based on T1-weighted images, 0.79 (0.72–0.84, 95% CI) for T2-weighted images, 0.88 (0.83–0.92, 95% CI) for CE-T1 images, and 0.88 (0.83–0.92, 95% CI) for all weighted images. The combined specificities were 0.72 based on T1-WI (0.66–0.78, 95% CI), 0.84 (0.78–0.89, 95% CI) based on T2-WI, 0.74 (0.67–0.80, 95% CI) for CE-T1, and 0.81 (0.76–0.86, 95% CI) for all weighted images. After all three MRI modalities were merged, the receiver operating characteristic (ROC) curve was calculated, and the area under the curve (AUC) was 0.93, with an accuracy of 0.87.

Conclusions

CNN based MRI analysis has the potential to accurately differentiate ependymomas from schwannomas in the lumbar segment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schellinger KA, Propp JM, Villano JL, McCarthy BJ. Descriptive epidemiology of primary spinal cord tumors. J Neurooncol. 2008;87(2):173–9.PubMedCrossRef Schellinger KA, Propp JM, Villano JL, McCarthy BJ. Descriptive epidemiology of primary spinal cord tumors. J Neurooncol. 2008;87(2):173–9.PubMedCrossRef
2.
go back to reference Duong LM, McCarthy BJ, McLendon RE, Dolecek TA, Kruchko C, Douglas LL, Ajani UA. Descriptive epidemiology of malignant and nonmalignant primary spinal cord, spinal meninges, and cauda equina tumors, United States, 2004–2007. Cancer. 2012;118(17):4220–7.PubMedCrossRef Duong LM, McCarthy BJ, McLendon RE, Dolecek TA, Kruchko C, Douglas LL, Ajani UA. Descriptive epidemiology of malignant and nonmalignant primary spinal cord, spinal meninges, and cauda equina tumors, United States, 2004–2007. Cancer. 2012;118(17):4220–7.PubMedCrossRef
3.
go back to reference Koeller KK, Shih RY. Intradural extramedullary spinal neoplasms: radiologic-pathologic correlation. Radiographics. 2019;39(2):468–90.PubMedCrossRef Koeller KK, Shih RY. Intradural extramedullary spinal neoplasms: radiologic-pathologic correlation. Radiographics. 2019;39(2):468–90.PubMedCrossRef
4.
go back to reference Liao D, Li D, Wang R, Xu J, Chen H. Hemilaminectomy for the removal of the spinal tumors: an analysis of 901 patients. Front Neurol. 2022;13:1094073.PubMedCrossRef Liao D, Li D, Wang R, Xu J, Chen H. Hemilaminectomy for the removal of the spinal tumors: an analysis of 901 patients. Front Neurol. 2022;13:1094073.PubMedCrossRef
5.
go back to reference Sonneland PR, Scheithauer BW, Onofrio BM. Myxopapillary ependymoma. A clinicopathologic and immunocytochemical study of 77 cases. Cancer. 1985;56(4):883–93.PubMedCrossRef Sonneland PR, Scheithauer BW, Onofrio BM. Myxopapillary ependymoma. A clinicopathologic and immunocytochemical study of 77 cases. Cancer. 1985;56(4):883–93.PubMedCrossRef
6.
go back to reference Liu T, Yang C, Deng X, Li A, Xin Y, Yang J, Xu Y. Clinical characteristics and surgical outcomes of spinal myxopapillary ependymomas. Neurosurg Rev. 2020;43(5):1351–6.PubMedCrossRef Liu T, Yang C, Deng X, Li A, Xin Y, Yang J, Xu Y. Clinical characteristics and surgical outcomes of spinal myxopapillary ependymomas. Neurosurg Rev. 2020;43(5):1351–6.PubMedCrossRef
7.
go back to reference Akyurek S, Chang EL, Yu T-K, Little D, Allen PK, McCutcheon I, Mahajan A, Maor MH, Woo SY. Spinal myxopapillary ependymoma outcomes in patients treated with surgery and radiotherapy at M.D. Anderson Cancer Center. J Neurooncol. 2006;80(2):177–83.PubMedCrossRef Akyurek S, Chang EL, Yu T-K, Little D, Allen PK, McCutcheon I, Mahajan A, Maor MH, Woo SY. Spinal myxopapillary ependymoma outcomes in patients treated with surgery and radiotherapy at M.D. Anderson Cancer Center. J Neurooncol. 2006;80(2):177–83.PubMedCrossRef
8.
go back to reference Wostrack M, Ringel F, Eicker SO, Jägersberg M, Schaller K, Kerschbaumer J, Thomé C, Shiban E, Stoffel M, Friedrich B, et al. Spinal ependymoma in adults: a multicenter investigation of surgical outcome and progression-free survival. J Neurosurg Spine. 2018;28(6):654–62.PubMedCrossRef Wostrack M, Ringel F, Eicker SO, Jägersberg M, Schaller K, Kerschbaumer J, Thomé C, Shiban E, Stoffel M, Friedrich B, et al. Spinal ependymoma in adults: a multicenter investigation of surgical outcome and progression-free survival. J Neurosurg Spine. 2018;28(6):654–62.PubMedCrossRef
9.
go back to reference Lee S-H, Chung CK, Kim CH, Yoon SH, Hyun S-J, Kim K-J, Kim E-S, Eoh W, Kim H-J. Long-term outcomes of surgical resection with or without adjuvant radiation therapy for treatment of spinal ependymoma: a retrospective multicenter study by the Korea Spinal Oncology Research Group. Neuro Oncol. 2013;15(7):921–9.PubMedPubMedCentralCrossRef Lee S-H, Chung CK, Kim CH, Yoon SH, Hyun S-J, Kim K-J, Kim E-S, Eoh W, Kim H-J. Long-term outcomes of surgical resection with or without adjuvant radiation therapy for treatment of spinal ependymoma: a retrospective multicenter study by the Korea Spinal Oncology Research Group. Neuro Oncol. 2013;15(7):921–9.PubMedPubMedCentralCrossRef
10.
go back to reference Marchesini N, Tommasi N, Faccioli F, Pinna G, Sala F. Cauda equina ependymomas: surgical treatment and long-term outcomes in a series of 125 patients. J Neurosurg Spine. 2022;36(3):452–63.PubMedCrossRef Marchesini N, Tommasi N, Faccioli F, Pinna G, Sala F. Cauda equina ependymomas: surgical treatment and long-term outcomes in a series of 125 patients. J Neurosurg Spine. 2022;36(3):452–63.PubMedCrossRef
11.
go back to reference Alvarez-Crespo DJ, Conlon M, Kazim SF, et al. Clinical Characteristics and Surgical Outcomes of 2542 Patients with Spinal Schwannomas: A Systematic Review and Meta-Analysis. World Neurosurg. 2024;182:165–83.PubMedCrossRef Alvarez-Crespo DJ, Conlon M, Kazim SF, et al. Clinical Characteristics and Surgical Outcomes of 2542 Patients with Spinal Schwannomas: A Systematic Review and Meta-Analysis. World Neurosurg. 2024;182:165–83.PubMedCrossRef
12.
go back to reference Zadnik PL, Gokaslan ZL, Burger PC, Bettegowda C. Spinal cord tumours: advances in genetics and their implications for treatment. Nat Rev Neurol. 2013;9(5):257–66.PubMedPubMedCentralCrossRef Zadnik PL, Gokaslan ZL, Burger PC, Bettegowda C. Spinal cord tumours: advances in genetics and their implications for treatment. Nat Rev Neurol. 2013;9(5):257–66.PubMedPubMedCentralCrossRef
13.
go back to reference Kraetzig T, McLaughlin L, Bilsky MH, Laufer I. Metastases of spinal myxopapillary ependymoma: unique characteristics and clinical management. J Neurosurg Spine. 2018;28(2):201–8.PubMedCrossRef Kraetzig T, McLaughlin L, Bilsky MH, Laufer I. Metastases of spinal myxopapillary ependymoma: unique characteristics and clinical management. J Neurosurg Spine. 2018;28(2):201–8.PubMedCrossRef
14.
go back to reference Fassett DR, Pingree J, Kestle JRW. The high incidence of tumor dissemination in myxopapillary ependymoma in pediatric patients. Report of five cases and review of the literature. J Neurosurg. 2005;102(1 Suppl):59–64.PubMed Fassett DR, Pingree J, Kestle JRW. The high incidence of tumor dissemination in myxopapillary ependymoma in pediatric patients. Report of five cases and review of the literature. J Neurosurg. 2005;102(1 Suppl):59–64.PubMed
15.
go back to reference Yin P, Mao N, Zhao C, Wu J, Chen L, Hong N. A triple-classification Radiomics Model for the differentiation of primary Chordoma, giant cell tumor, and metastatic tumor of sacrum based on T2-weighted and contrast-enhanced T1-weighted MRI. J Magn Reson Imaging. 2019;49(3):752–9.PubMedCrossRef Yin P, Mao N, Zhao C, Wu J, Chen L, Hong N. A triple-classification Radiomics Model for the differentiation of primary Chordoma, giant cell tumor, and metastatic tumor of sacrum based on T2-weighted and contrast-enhanced T1-weighted MRI. J Magn Reson Imaging. 2019;49(3):752–9.PubMedCrossRef
16.
go back to reference Chianca V, Cuocolo R, Gitto S, Albano D, Merli I, Badalyan J, Cortese MC, Messina C, Luzzati A, Parafioriti A, et al. Radiomic machine learning classifiers in spine bone tumors: a multi-software, multi-scanner study. Eur J Radiol. 2021;137:109586.PubMedCrossRef Chianca V, Cuocolo R, Gitto S, Albano D, Merli I, Badalyan J, Cortese MC, Messina C, Luzzati A, Parafioriti A, et al. Radiomic machine learning classifiers in spine bone tumors: a multi-software, multi-scanner study. Eur J Radiol. 2021;137:109586.PubMedCrossRef
17.
go back to reference Long D, Wang J, Xuan M, Gu Q, Xu X, Kong D, Zhang M. Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PLoS One. 2012;7(11):e47714.ADSPubMedPubMedCentralCrossRef Long D, Wang J, Xuan M, Gu Q, Xu X, Kong D, Zhang M. Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PLoS One. 2012;7(11):e47714.ADSPubMedPubMedCentralCrossRef
18.
go back to reference Hamm CA, Wang CJ, Savic LJ, Ferrante M, Schobert I, Schlachter T, Lin M, Duncan JS, Weinreb JC, Chapiro J, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur Radiol. 2019;29(7):3338–47.PubMedPubMedCentralCrossRef Hamm CA, Wang CJ, Savic LJ, Ferrante M, Schobert I, Schlachter T, Lin M, Duncan JS, Weinreb JC, Chapiro J, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur Radiol. 2019;29(7):3338–47.PubMedPubMedCentralCrossRef
19.
go back to reference Jin L, Shi F, Chun Q, Chen H, Ma Y, Wu S, Hameed NUF, Mei C, Lu J, Zhang J, et al. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. Neuro Oncol. 2021;23(1):44–52.PubMedCrossRef Jin L, Shi F, Chun Q, Chen H, Ma Y, Wu S, Hameed NUF, Mei C, Lu J, Zhang J, et al. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. Neuro Oncol. 2021;23(1):44–52.PubMedCrossRef
20.
go back to reference Kleeff J, Ronellenfitsch U. AI and imaging-based cancer screening: getting ready for prime time. Nat Med. 2023;29(12):3002–3.PubMedCrossRef Kleeff J, Ronellenfitsch U. AI and imaging-based cancer screening: getting ready for prime time. Nat Med. 2023;29(12):3002–3.PubMedCrossRef
21.
go back to reference Maki S, Furuya T, Horikoshi T, Yokota H, Mori Y, Ota J, Kawasaki Y, Miyamoto T, Norimoto M, Okimatsu S, et al. A deep convolutional neural network with performance comparable to radiologists for differentiating between spinal Schwannoma and Meningioma. Spine (Phila Pa 1976). 2020;45(10):694–700.PubMedCrossRef Maki S, Furuya T, Horikoshi T, Yokota H, Mori Y, Ota J, Kawasaki Y, Miyamoto T, Norimoto M, Okimatsu S, et al. A deep convolutional neural network with performance comparable to radiologists for differentiating between spinal Schwannoma and Meningioma. Spine (Phila Pa 1976). 2020;45(10):694–700.PubMedCrossRef
22.
go back to reference Lin W-W, Liu T-J, Dai W-L, Wang Q-W, Hu X-B, Gu Z-W, Zhu Y-J. Diagnostic performance evaluation of adult Chiari malformation type I based on convolutional neural networks. Eur J Radiol. 2022;151:110287.PubMedCrossRef Lin W-W, Liu T-J, Dai W-L, Wang Q-W, Hu X-B, Gu Z-W, Zhu Y-J. Diagnostic performance evaluation of adult Chiari malformation type I based on convolutional neural networks. Eur J Radiol. 2022;151:110287.PubMedCrossRef
23.
go back to reference Ito S, Ando K, Kobayashi K, Nakashima H, Oda M, Machino M, Kanbara S, Inoue T, Yamaguchi H, Koshimizu H, et al. Automated detection of spinal schwannomas utilizing deep learning based on object detection from magnetic resonance imaging. Spine (Phila Pa 1976). 2021;46(2):95–100.PubMedCrossRef Ito S, Ando K, Kobayashi K, Nakashima H, Oda M, Machino M, Kanbara S, Inoue T, Yamaguchi H, Koshimizu H, et al. Automated detection of spinal schwannomas utilizing deep learning based on object detection from magnetic resonance imaging. Spine (Phila Pa 1976). 2021;46(2):95–100.PubMedCrossRef
24.
go back to reference Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.PubMedPubMedCentralCrossRef Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.PubMedPubMedCentralCrossRef
25.
go back to reference Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a database and web-based tool for image annotation. Int J Comput Vision. 2008;77(1):157–73.CrossRef Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a database and web-based tool for image annotation. Int J Comput Vision. 2008;77(1):157–73.CrossRef
27.
go back to reference He K, Zhang X, Ren S, Sun JJI. Deep residual learning for image recognition. 2016.CrossRef He K, Zhang X, Ren S, Sun JJI. Deep residual learning for image recognition. 2016.CrossRef
28.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE; 2016. p. 2818–26. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE; 2016. p. 2818–26.
29.
go back to reference Walter S. Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Stat Med. 2010;21(9):1237–56.CrossRef Walter S. Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Stat Med. 2010;21(9):1237–56.CrossRef
30.
go back to reference Guo J, Riebler A. meta4diag: Bayesian bivariate meta-analysis of diagnostic test studies for routine practice. J Stat Softw. 2018;83(1):1–31.CrossRef Guo J, Riebler A. meta4diag: Bayesian bivariate meta-analysis of diagnostic test studies for routine practice. J Stat Softw. 2018;83(1):1–31.CrossRef
31.
go back to reference Tilley B, Forthofer R, Harrist R. Analysis of quality control data: using fleiss’ extension of Cohen’s Kappa to test that observer agreement achieves a predetermined standard. Controlled Clin Trials. 1981;2(1):70.CrossRef Tilley B, Forthofer R, Harrist R. Analysis of quality control data: using fleiss’ extension of Cohen’s Kappa to test that observer agreement achieves a predetermined standard. Controlled Clin Trials. 1981;2(1):70.CrossRef
32.
go back to reference Selvaraju RR, Das A, Vedantam R, Cogswell M, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Journal of Computer Vision. Venice: IEEE; 2017. p. 618–26. Selvaraju RR, Das A, Vedantam R, Cogswell M, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Journal of Computer Vision. Venice: IEEE; 2017. p. 618–26.
33.
go back to reference Dauleac C, Manet R, Meyronet D, Jacquesson T, Berhouma M, Robinson P, Berthiller J, Jouanneau E, Barrey CY, Mertens P. Prognostic factors for progression-free survival of the filum terminale ependymomas in adults. Neurochirurgie. 2022;68:273.PubMedCrossRef Dauleac C, Manet R, Meyronet D, Jacquesson T, Berhouma M, Robinson P, Berthiller J, Jouanneau E, Barrey CY, Mertens P. Prognostic factors for progression-free survival of the filum terminale ependymomas in adults. Neurochirurgie. 2022;68:273.PubMedCrossRef
34.
go back to reference Ilhan A, Furtner J, Birner P, Rössler K, Marosi C, Preusser M. Myxopapillary ependymoma with pleuropulmonary metastases and high plasma glial fibrillary acidic protein levels. J Clin Oncol. 2011;29(30):e756–757.PubMedCrossRef Ilhan A, Furtner J, Birner P, Rössler K, Marosi C, Preusser M. Myxopapillary ependymoma with pleuropulmonary metastases and high plasma glial fibrillary acidic protein levels. J Clin Oncol. 2011;29(30):e756–757.PubMedCrossRef
35.
go back to reference Fonseca L, Cicuendez M, Martínez-Ricarte F, Martínez-Saez E, Cordero E, Bescos A. A rare case of an intramedullary metastasis of a myxopapillary ependymoma. Surg Neurol Int. 2019;10:83.PubMedPubMedCentralCrossRef Fonseca L, Cicuendez M, Martínez-Ricarte F, Martínez-Saez E, Cordero E, Bescos A. A rare case of an intramedullary metastasis of a myxopapillary ependymoma. Surg Neurol Int. 2019;10:83.PubMedPubMedCentralCrossRef
36.
go back to reference Lee JC, Sharifai N, Dahiya S, Kleinschmidt-DeMasters BK, Rosenblum MK, Reis GF, Samuel D, Siongco AM, Santi M, Storm PB, et al. Clinicopathologic features of anaplastic myxopapillary ependymomas. Brain Pathol. 2019;29(1):75–84.PubMedPubMedCentralCrossRef Lee JC, Sharifai N, Dahiya S, Kleinschmidt-DeMasters BK, Rosenblum MK, Reis GF, Samuel D, Siongco AM, Santi M, Storm PB, et al. Clinicopathologic features of anaplastic myxopapillary ependymomas. Brain Pathol. 2019;29(1):75–84.PubMedPubMedCentralCrossRef
38.
go back to reference Xie T-H, Chen X-Z, Qian J, Lu Y-C, Jiang Y-K, Zhang L, Hu G-H, Ding X-H, Luo C. Surgery for primary filum terminale ependymomas: outcome and prognostic factors. CNS Neurosci Ther. 2014;20(2):131–9.PubMedCrossRef Xie T-H, Chen X-Z, Qian J, Lu Y-C, Jiang Y-K, Zhang L, Hu G-H, Ding X-H, Luo C. Surgery for primary filum terminale ependymomas: outcome and prognostic factors. CNS Neurosci Ther. 2014;20(2):131–9.PubMedCrossRef
39.
go back to reference Kucia EJ, Maughan PH, Kakarla UK, Bambakidis NC, Spetzler RF. Surgical technique and outcomes in the treatment of spinal cord ependymomas: part II: myxopapillary ependymoma. Neurosurgery. 2011;68(1 Suppl Operative):57.PubMed Kucia EJ, Maughan PH, Kakarla UK, Bambakidis NC, Spetzler RF. Surgical technique and outcomes in the treatment of spinal cord ependymomas: part II: myxopapillary ependymoma. Neurosurgery. 2011;68(1 Suppl Operative):57.PubMed
40.
go back to reference Westphal M, Mende KC, Eicker SO. Refining the treatment of spinal cord lesions: experience from 500 cases. Neurosurg Focus. 2021;50(5):E22.PubMedCrossRef Westphal M, Mende KC, Eicker SO. Refining the treatment of spinal cord lesions: experience from 500 cases. Neurosurg Focus. 2021;50(5):E22.PubMedCrossRef
41.
go back to reference Sun J-C, Xu T, Chen K-F, Qian W, Liu K, Shi J-G, Yuan W, Jia L-S. Assessment of Cauda Equina syndrome progression pattern to improve diagnosis. Spine (Phila Pa 1976). 2014;39(7):596–602.PubMedCrossRef Sun J-C, Xu T, Chen K-F, Qian W, Liu K, Shi J-G, Yuan W, Jia L-S. Assessment of Cauda Equina syndrome progression pattern to improve diagnosis. Spine (Phila Pa 1976). 2014;39(7):596–602.PubMedCrossRef
42.
go back to reference Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics. 2000;20(6):1721–49.PubMedCrossRef Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics. 2000;20(6):1721–49.PubMedCrossRef
43.
go back to reference Colosimo C, Cerase A, Denaro L, Maira G, Greco R. Magnetic resonance imaging of intramedullary spinal cord schwannomas. Report of two cases and review of the literature. J Neurosurg. 2003;99(1 Suppl):114–7.PubMed Colosimo C, Cerase A, Denaro L, Maira G, Greco R. Magnetic resonance imaging of intramedullary spinal cord schwannomas. Report of two cases and review of the literature. J Neurosurg. 2003;99(1 Suppl):114–7.PubMed
44.
go back to reference Ito K, Ando K, Kobayashi K, Tsushima M, Machino M, Ota K, Morozumi M, Tanaka S, Ishiguro N, Imagama S. Differentiation of spinal myxopapillary ependymomas from schwannomas by contrast-enhanced MRI. J Orthop Sci. 2018;23(6):908–11.PubMedCrossRef Ito K, Ando K, Kobayashi K, Tsushima M, Machino M, Ota K, Morozumi M, Tanaka S, Ishiguro N, Imagama S. Differentiation of spinal myxopapillary ependymomas from schwannomas by contrast-enhanced MRI. J Orthop Sci. 2018;23(6):908–11.PubMedCrossRef
Metadata
Title
Convolutional neural network-based magnetic resonance image differentiation of filum terminale ependymomas from schwannomas
Authors
Zhaowen Gu
Wenli Dai
Jiarui Chen
Qixuan Jiang
Weiwei Lin
Qiangwei Wang
Jingyin Chen
Chi Gu
Jia Li
Guangyu Ying
Yongjian Zhu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12023-0

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine