Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 8/2023

03-04-2023 | Schizophrenia | Original Paper

Significance of an altered lncRNA landscape in schizophrenia and cognition: clues from a case–control association study

Authors: Anirban Mukhopadhyay, Smita N. Deshpande, Triptish Bhatia, B. K. Thelma

Published in: European Archives of Psychiatry and Clinical Neuroscience | Issue 8/2023

Login to get access

Abstract

Genetic etiology of schizophrenia is poorly understood despite large genome-wide association data. Long non-coding RNAs (lncRNAs) with a probable regulatory role are emerging as important players in neuro-psychiatric disorders including schizophrenia. Prioritising important lncRNAs and analyses of their holistic interaction with their target genes may provide insights into disease biology/etiology. Of the 3843 lncRNA SNPs reported in schizophrenia GWASs extracted using lincSNP 2.0, we prioritised n = 247 based on association strength, minor allele frequency and regulatory potential and mapped them to lncRNAs. lncRNAs were then prioritised based on their expression in brain using lncRBase, epigenetic role using 3D SNP and functional relevance to schizophrenia etiology. 18 SNPs were finally tested for association with schizophrenia (n = 930) and its endophenotypes—tardive dyskinesia (n = 176) and cognition (n = 565) using a case–control approach. Associated SNPs were characterised by ChIP seq, eQTL, and transcription factor binding site (TFBS) data using FeatSNP. Of the eight SNPs significantly associated, rs2072806 in lncRNA hsaLB_IO39983 with regulatory effect on BTN3A2 was associated with schizophrenia (p = 0.006); rs2710323 in hsaLB_IO_2331 with role in dysregulation of ITIH1 with tardive dyskinesia (p < 0.05); and four SNPs with significant cognition score reduction (p < 0.05) in cases. Two of these with two additional variants in eQTL were observed among controls (p < 0.05), acting likely as enhancer SNPs and/or altering TFBS of eQTL mapped downstream genes. This study highlights important lncRNAs in schizophrenia and provides a proof of concept of novel interactions of lncRNAs with protein-coding genes to elicit alterations in immune/inflammatory pathways of schizophrenia.
Appendix
Available only for authorised users
Literature
1.
go back to reference H L (2008) Clinical handbook of schizophrenia. In: Mueser KT JD, editor. New York, Guilford Press, pp 3–12 H L (2008) Clinical handbook of schizophrenia. In: Mueser KT JD, editor. New York, Guilford Press, pp 3–12
2.
go back to reference Beck AT, Rector NA, Stolar N GP (2009) H. New York, New York, Guilford Press, pp 30–61 Beck AT, Rector NA, Stolar N GP (2009) H. New York, New York, Guilford Press, pp 30–61
3.
go back to reference Sumiyoshi T, Stockmeier CA, Overholser JC, Dilley GE, Meltzer HY (1996) Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Res 708(1–2):209–214PubMedCrossRef Sumiyoshi T, Stockmeier CA, Overholser JC, Dilley GE, Meltzer HY (1996) Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Res 708(1–2):209–214PubMedCrossRef
4.
go back to reference Wible CG, Anderson J, Shenton ME, Kricun A, Hirayasu Y, Tanaka S et al (2001) Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study. Psychiatry Res Neuroimaging 108(2):65–78CrossRef Wible CG, Anderson J, Shenton ME, Kricun A, Hirayasu Y, Tanaka S et al (2001) Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study. Psychiatry Res Neuroimaging 108(2):65–78CrossRef
5.
go back to reference Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J et al (2014) The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front Psychiatry 5:110PubMedCentral Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J et al (2014) The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front Psychiatry 5:110PubMedCentral
7.
go back to reference Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait. Arch Gen Psychiatry 60(12):1187PubMedCrossRef Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait. Arch Gen Psychiatry 60(12):1187PubMedCrossRef
8.
go back to reference Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF et al (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. The Lancet 373(9659):234–239CrossRef Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF et al (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. The Lancet 373(9659):234–239CrossRef
9.
go back to reference Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX et al (2011) Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 43(12):1228–31PubMedCrossRef Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX et al (2011) Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 43(12):1228–31PubMedCrossRef
10.
go back to reference Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43(10):969–978CrossRef Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43(10):969–978CrossRef
12.
go back to reference Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641PubMedCrossRef Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641PubMedCrossRef
13.
go back to reference Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58PubMedPubMedCentralCrossRef Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58PubMedPubMedCentralCrossRef
14.
go back to reference Schor IE, Bussotti G, Maleš M, Forneris M, Viales RR, Enright AJ et al (2018) Non-coding RNA expression, function, and variation during drosophila embryogenesis. Curr Biol 28(22):3547-3561.e9PubMedPubMedCentralCrossRef Schor IE, Bussotti G, Maleš M, Forneris M, Viales RR, Enright AJ et al (2018) Non-coding RNA expression, function, and variation during drosophila embryogenesis. Curr Biol 28(22):3547-3561.e9PubMedPubMedCentralCrossRef
16.
go back to reference Li CY, Li X, Liu Z, Ni W, Zhang X, Hazi W et al (2019) Identification and characterization of long non-coding RNA in prenatal and postnatal skeletal muscle of sheep. Genomics 111(2):133–141PubMedCrossRef Li CY, Li X, Liu Z, Ni W, Zhang X, Hazi W et al (2019) Identification and characterization of long non-coding RNA in prenatal and postnatal skeletal muscle of sheep. Genomics 111(2):133–141PubMedCrossRef
17.
go back to reference Leone S, Santoro R (2016) Challenges in the analysis of long noncoding RNA functionality. FEBS Lett 590:2342–53PubMedCrossRef Leone S, Santoro R (2016) Challenges in the analysis of long noncoding RNA functionality. FEBS Lett 590:2342–53PubMedCrossRef
18.
go back to reference da Sacco L, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13:97–114PubMedCrossRef da Sacco L, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13:97–114PubMedCrossRef
19.
go back to reference Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789PubMedPubMedCentralCrossRef Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789PubMedPubMedCentralCrossRef
20.
go back to reference Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci 105(2):716–721PubMedPubMedCentralCrossRef Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci 105(2):716–721PubMedPubMedCentralCrossRef
21.
go back to reference Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J et al (2014) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell 53(6):1005–1019PubMedPubMedCentralCrossRef Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J et al (2014) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell 53(6):1005–1019PubMedPubMedCentralCrossRef
22.
go back to reference Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 31(3):522–533PubMedCrossRef Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 31(3):522–533PubMedCrossRef
23.
go back to reference Ng SY, Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51(3):349–359PubMedCrossRef Ng SY, Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51(3):349–359PubMedCrossRef
25.
go back to reference Merelo V, Durand D, Lescallette AR, Vrana KE, Hong LE, Faghihi MA et al (2015) Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front Mol Neurosci 8:57PubMedPubMedCentralCrossRef Merelo V, Durand D, Lescallette AR, Vrana KE, Hong LE, Faghihi MA et al (2015) Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front Mol Neurosci 8:57PubMedPubMedCentralCrossRef
26.
go back to reference Liu Y, Chang X, Hahn CG, Gur RE, Sleiman PAM, Hakonarson H (2018) Non-coding RNA dysregulation in the amygdala region of schizophrenia patients contributes to the pathogenesis of the disease. Transl Psychiatry 8(1):1–10CrossRef Liu Y, Chang X, Hahn CG, Gur RE, Sleiman PAM, Hakonarson H (2018) Non-coding RNA dysregulation in the amygdala region of schizophrenia patients contributes to the pathogenesis of the disease. Transl Psychiatry 8(1):1–10CrossRef
27.
go back to reference Jin G, Sun J, Isaacs SD, Wiley KE, Kim ST, Chu LW et al (2011) Human polymorphisms at long non-coding RNAs (lncRNAs) and association with prostate cancer risk. Carcinogenesis 32(11):1655–1659PubMedPubMedCentralCrossRef Jin G, Sun J, Isaacs SD, Wiley KE, Kim ST, Chu LW et al (2011) Human polymorphisms at long non-coding RNAs (lncRNAs) and association with prostate cancer risk. Carcinogenesis 32(11):1655–1659PubMedPubMedCentralCrossRef
28.
go back to reference Qi J, Du L, Deng J, Qin Y, Su G, Hou S et al (2019) Replication of genome-wide association analysis identifies new susceptibility loci at long noncoding RNA regions for Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 60(14):4820–9PubMedCrossRef Qi J, Du L, Deng J, Qin Y, Su G, Hou S et al (2019) Replication of genome-wide association analysis identifies new susceptibility loci at long noncoding RNA regions for Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 60(14):4820–9PubMedCrossRef
29.
go back to reference Yuen O, Caligiuri MP, Williams R, Dickson RA (1996) Tardive dyskinesia and positive and negative symptoms of schizophrenia. A study using instrumental measures. Br J Psychiatry 168(6):702–8PubMedCrossRef Yuen O, Caligiuri MP, Williams R, Dickson RA (1996) Tardive dyskinesia and positive and negative symptoms of schizophrenia. A study using instrumental measures. Br J Psychiatry 168(6):702–8PubMedCrossRef
31.
go back to reference Waddington JL, Youssef HA, Dolphin C, Kinsella A (1987) Cognitive dysfunction, negative symptoms, and tardive dyskinesia in schizophrenia. Their association in relation to topography of involuntary movements and criterion of their abnormality. Arch Gen Psychiatry 44(10):907–12PubMedCrossRef Waddington JL, Youssef HA, Dolphin C, Kinsella A (1987) Cognitive dysfunction, negative symptoms, and tardive dyskinesia in schizophrenia. Their association in relation to topography of involuntary movements and criterion of their abnormality. Arch Gen Psychiatry 44(10):907–12PubMedCrossRef
32.
go back to reference Dickinson D, Harvey PD (2009) Systemic hypotheses for generalized cognitive deficits in schizophrenia: a new take on an old problem. Schizophr Bull 35(2):403–414PubMedCrossRef Dickinson D, Harvey PD (2009) Systemic hypotheses for generalized cognitive deficits in schizophrenia: a new take on an old problem. Schizophr Bull 35(2):403–414PubMedCrossRef
33.
go back to reference Kalkstein S, Hurford I, Gur RC (2010) Neurocognition in schizophrenia. Curr Top Behav Neurosci. 4:373–90PubMedCrossRef Kalkstein S, Hurford I, Gur RC (2010) Neurocognition in schizophrenia. Curr Top Behav Neurosci. 4:373–90PubMedCrossRef
34.
go back to reference Millan M (2008) Animal and translational models for CNS drug discovery. Elsevier, Amsterdam Millan M (2008) Animal and translational models for CNS drug discovery. Elsevier, Amsterdam
37.
go back to reference Deshpande SN, Mathur MN, Das SK, Bhatia T, Sharma S, Nimgaonkar VL (1998) A Hindi version of the diagnostic interview for genetic studies. Schizophr Bull 24(3):489–493PubMedCrossRef Deshpande SN, Mathur MN, Das SK, Bhatia T, Sharma S, Nimgaonkar VL (1998) A Hindi version of the diagnostic interview for genetic studies. Schizophr Bull 24(3):489–493PubMedCrossRef
38.
go back to reference Nurnberger JI, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J et al (1994) Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 51(11):849–59 (discussion 863-4)PubMedCrossRef Nurnberger JI, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J et al (1994) Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 51(11):849–59 (discussion 863-4)PubMedCrossRef
39.
go back to reference Tiwari AK, Deshpande SN, Rao AR, Bhatia T, Lerer B, Nimgaonkar VL et al (2005) Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6 gene polymorphisms. Schizophr Res 75(1):21–6PubMedCrossRef Tiwari AK, Deshpande SN, Rao AR, Bhatia T, Lerer B, Nimgaonkar VL et al (2005) Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6 gene polymorphisms. Schizophr Res 75(1):21–6PubMedCrossRef
40.
go back to reference Tiwari AK, Deshpande SN, Lerer B, Nimgaonkar VL, Thelma BK (2007) Genetic susceptibility to Tardive Dyskinesia in chronic schizophrenia subjects: V. Association of CYP1A2 1545 C>T polymorphism. Pharmacogenomics J 7(5):305–11PubMedCrossRef Tiwari AK, Deshpande SN, Lerer B, Nimgaonkar VL, Thelma BK (2007) Genetic susceptibility to Tardive Dyskinesia in chronic schizophrenia subjects: V. Association of CYP1A2 1545 C>T polymorphism. Pharmacogenomics J 7(5):305–11PubMedCrossRef
41.
go back to reference Bhatia T, Agarwal A, Shah G, Wood J, Richard J, Gur RE et al (2012) Adjunctive cognitive remediation for schizophrenia using yoga: an open, non-randomised trial. Acta Neuropsychiatr 24(02):91–100PubMedCrossRef Bhatia T, Agarwal A, Shah G, Wood J, Richard J, Gur RE et al (2012) Adjunctive cognitive remediation for schizophrenia using yoga: an open, non-randomised trial. Acta Neuropsychiatr 24(02):91–100PubMedCrossRef
42.
go back to reference Kukshal P, Bhatia T, Bhagwat AM, Gur RE, Gur RC, Deshpande SN et al (2013) Association study of Neuregulin-1 gene polymorphisms in a north Indian schizophrenia sample. Schizophr Res 144(1–3):24–30PubMedPubMedCentralCrossRef Kukshal P, Bhatia T, Bhagwat AM, Gur RE, Gur RC, Deshpande SN et al (2013) Association study of Neuregulin-1 gene polymorphisms in a north Indian schizophrenia sample. Schizophr Res 144(1–3):24–30PubMedPubMedCentralCrossRef
43.
go back to reference Ning S, Yue M, Wang P, Liu Y, Zhi H, Zhang Y et al (2017) LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs. Nucleic Acids Res 45(D1):D74-8PubMedCrossRef Ning S, Yue M, Wang P, Liu Y, Zhi H, Zhang Y et al (2017) LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs. Nucleic Acids Res 45(D1):D74-8PubMedCrossRef
44.
go back to reference Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M et al (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22(9):1790–1797PubMedPubMedCentralCrossRef Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M et al (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22(9):1790–1797PubMedPubMedCentralCrossRef
48.
go back to reference Gauderman WJ (2002) Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 21(1):35–50PubMedCrossRef Gauderman WJ (2002) Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 21(1):35–50PubMedCrossRef
49.
go back to reference Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575PubMedPubMedCentralCrossRef Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575PubMedPubMedCentralCrossRef
52.
go back to reference Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518(7539):317–30PubMedCentralCrossRef Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518(7539):317–30PubMedCentralCrossRef
54.
go back to reference Rietveld CA, Esko T, Davies G, Pers TH, Turley P, Benyamin B et al (2014) Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci USA 111(38):13790–13794PubMedPubMedCentralCrossRef Rietveld CA, Esko T, Davies G, Pers TH, Turley P, Benyamin B et al (2014) Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci USA 111(38):13790–13794PubMedPubMedCentralCrossRef
55.
go back to reference Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M et al (2018) Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 11 million individuals. Nat Genet 50(8):1112–21PubMedPubMedCentralCrossRef Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M et al (2018) Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 11 million individuals. Nat Genet 50(8):1112–21PubMedPubMedCentralCrossRef
56.
go back to reference Benyamin B, Pourcain B, Davis OS, Davies G, Hansell NK, Brion MJ et al (2014) Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry 19(2):253–258PubMedCrossRef Benyamin B, Pourcain B, Davis OS, Davies G, Hansell NK, Brion MJ et al (2014) Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry 19(2):253–258PubMedCrossRef
57.
go back to reference Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD et al (2018) Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun 9(1):2098PubMedPubMedCentralCrossRef Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD et al (2018) Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun 9(1):2098PubMedPubMedCentralCrossRef
58.
go back to reference Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE et al (2016) Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Mol Psychiatry 21(6):758–767PubMedPubMedCentralCrossRef Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE et al (2016) Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Mol Psychiatry 21(6):758–767PubMedPubMedCentralCrossRef
59.
go back to reference Luciano M, Hagenaars SP, Davies G, Hill WD, Clarke TK, Shirali M et al (2017) Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nat Genet 50(1):6–11PubMedPubMedCentralCrossRef Luciano M, Hagenaars SP, Davies G, Hill WD, Clarke TK, Shirali M et al (2017) Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nat Genet 50(1):6–11PubMedPubMedCentralCrossRef
60.
go back to reference McGuire JL, Hammond JH, Yates SD, Chen D, Haroutunian V, Meador-Woodruff JH et al (2014) Altered serine/threonine kinase activity in schizophrenia. Brain Res 1568:42PubMedPubMedCentralCrossRef McGuire JL, Hammond JH, Yates SD, Chen D, Haroutunian V, Meador-Woodruff JH et al (2014) Altered serine/threonine kinase activity in schizophrenia. Brain Res 1568:42PubMedPubMedCentralCrossRef
61.
go back to reference McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE et al (2010) Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol 185(10):6317PubMedCrossRef McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE et al (2010) Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol 185(10):6317PubMedCrossRef
62.
go back to reference You JE, Jung SH, Kim PH (2021) The effect of Annexin A1 as a potential new therapeutic target on neuronal damage by activated microglia. Mol Cells 44(4):195PubMedPubMedCentralCrossRef You JE, Jung SH, Kim PH (2021) The effect of Annexin A1 as a potential new therapeutic target on neuronal damage by activated microglia. Mol Cells 44(4):195PubMedPubMedCentralCrossRef
64.
go back to reference Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N et al (2019) Genetic associations between voltage-gated calcium channels and psychiatric disorders. Int J Mol Sci 20(14):3537PubMedPubMedCentralCrossRef Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N et al (2019) Genetic associations between voltage-gated calcium channels and psychiatric disorders. Int J Mol Sci 20(14):3537PubMedPubMedCentralCrossRef
65.
go back to reference Soldatov N (2015) CACNB2: an emerging pharmacological target for hypertension, heart failure, arrhythmia and mental disorders. Curr Mol Pharmacol 8(1):32–42PubMedCrossRef Soldatov N (2015) CACNB2: an emerging pharmacological target for hypertension, heart failure, arrhythmia and mental disorders. Curr Mol Pharmacol 8(1):32–42PubMedCrossRef
66.
go back to reference He K, Wang Q, Chen J, Li T, Li Z, Li W et al (2014) ITIH family genes confer risk to schizophrenia and major depressive disorder in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 3(51):34–38CrossRef He K, Wang Q, Chen J, Li T, Li Z, Li W et al (2014) ITIH family genes confer risk to schizophrenia and major depressive disorder in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 3(51):34–38CrossRef
67.
go back to reference Miyake Y, Tanaka K, Arakawa M (2018) ITIH3 and ITIH4 polymorphisms and depressive symptoms during pregnancy in Japan: the Kyushu Okinawa Maternal and Child Health Study. J Neural Transm (Vienna) 125(10):1503–1509PubMedCrossRef Miyake Y, Tanaka K, Arakawa M (2018) ITIH3 and ITIH4 polymorphisms and depressive symptoms during pregnancy in Japan: the Kyushu Okinawa Maternal and Child Health Study. J Neural Transm (Vienna) 125(10):1503–1509PubMedCrossRef
68.
go back to reference Brandl EJ, Lett TA, Chowdhury NI, Tiwari AK, Bakanidze G, Meltzer HY et al (2016) The role of the ITIH3 rs2535629 variant in antipsychotic response. Schizophr Res 176(2–3):131–135PubMedCrossRef Brandl EJ, Lett TA, Chowdhury NI, Tiwari AK, Bakanidze G, Meltzer HY et al (2016) The role of the ITIH3 rs2535629 variant in antipsychotic response. Schizophr Res 176(2–3):131–135PubMedCrossRef
70.
go back to reference Wu Y, Bi R, Zeng C, Ma C, Sun C, Li J et al (2019) Identification of the primate-specific gene BTN3A2 as an additional schizophrenia risk gene in the MHC loci. EBioMedicine 44:530PubMedPubMedCentralCrossRef Wu Y, Bi R, Zeng C, Ma C, Sun C, Li J et al (2019) Identification of the primate-specific gene BTN3A2 as an additional schizophrenia risk gene in the MHC loci. EBioMedicine 44:530PubMedPubMedCentralCrossRef
71.
go back to reference Afrache H, Gouret P, Ainouche S, Pontarotti P, Olive D (2012) The butyrophilin (BTN) gene family: from milk fat to the regulation of the immune response. Immunogenetics 64(11):781–794PubMedCrossRef Afrache H, Gouret P, Ainouche S, Pontarotti P, Olive D (2012) The butyrophilin (BTN) gene family: from milk fat to the regulation of the immune response. Immunogenetics 64(11):781–794PubMedCrossRef
72.
go back to reference Lin Y, Zhou H, Li S (2022) BTN3A2 expression is connected with favorable prognosis and high infiltrating immune in lung adenocarcinoma. Front Genet 13:1CrossRef Lin Y, Zhou H, Li S (2022) BTN3A2 expression is connected with favorable prognosis and high infiltrating immune in lung adenocarcinoma. Front Genet 13:1CrossRef
74.
go back to reference Boukouaci W, Lajnef M, Richard JR, Wu CL, Bouassida J, Rafik I et al (2021) HLA-E circulating and genetic determinants in schizophrenia and bipolar disorder. Sci Rep 11(1):1–10CrossRef Boukouaci W, Lajnef M, Richard JR, Wu CL, Bouassida J, Rafik I et al (2021) HLA-E circulating and genetic determinants in schizophrenia and bipolar disorder. Sci Rep 11(1):1–10CrossRef
78.
go back to reference Wright P, Nimgaonkar VL, Donaldson PT, Murray RM (2001) Schizophrenia and HLA: a review. Schizophr Res 47(1):1–12PubMedCrossRef Wright P, Nimgaonkar VL, Donaldson PT, Murray RM (2001) Schizophrenia and HLA: a review. Schizophr Res 47(1):1–12PubMedCrossRef
79.
go back to reference Crowe RR, Thompson JS, Flink R, Weinberger B (1979) HLA antigens and schizophrenia. Arch Gen Psychiatry 36(2):231–233PubMedCrossRef Crowe RR, Thompson JS, Flink R, Weinberger B (1979) HLA antigens and schizophrenia. Arch Gen Psychiatry 36(2):231–233PubMedCrossRef
80.
go back to reference Sayeh A, Cheikh CB, Mrad M, Lakhal N, Gritli N, Galelli S et al (2014) Association of HLA-DR/DQ polymorphisms with schizophrenia in Tunisian patients. Ann Saudi Med 34(6):503PubMedPubMedCentralCrossRef Sayeh A, Cheikh CB, Mrad M, Lakhal N, Gritli N, Galelli S et al (2014) Association of HLA-DR/DQ polymorphisms with schizophrenia in Tunisian patients. Ann Saudi Med 34(6):503PubMedPubMedCentralCrossRef
81.
go back to reference Ibrahim EC, Guillemot V, Comte M, Tenenhaus A, Zendjidjian XY, Cancel A et al (2017) Modeling a linkage between blood transcriptional expression and activity in brain regions to infer the phenotype of schizophrenia patients. npj Schizophrenia 3(1):1–10CrossRef Ibrahim EC, Guillemot V, Comte M, Tenenhaus A, Zendjidjian XY, Cancel A et al (2017) Modeling a linkage between blood transcriptional expression and activity in brain regions to infer the phenotype of schizophrenia patients. npj Schizophrenia 3(1):1–10CrossRef
82.
go back to reference Sidibé H, Dubinski A, Vande VC (2021) The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem 157(4):944PubMedPubMedCentralCrossRef Sidibé H, Dubinski A, Vande VC (2021) The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem 157(4):944PubMedPubMedCentralCrossRef
83.
go back to reference Ohi K, Sumiyoshi C, Fujino H, Yasuda Y, Yamamori H, Fujimoto M et al (2018) Genetic overlap between general cognitive function and schizophrenia: a review of cognitive GWASs. Int J Mol Sci 19(12):3822PubMedPubMedCentralCrossRef Ohi K, Sumiyoshi C, Fujino H, Yasuda Y, Yamamori H, Fujimoto M et al (2018) Genetic overlap between general cognitive function and schizophrenia: a review of cognitive GWASs. Int J Mol Sci 19(12):3822PubMedPubMedCentralCrossRef
84.
go back to reference Heckman PRA, Van Duinen MA, Bollen EPP, Nishi A, Wennogle LP, Blokland A et al (2016) Phosphodiesterase inhibition and regulation of dopaminergic frontal and striatal functioning: clinical implications. Int J Neuropsychopharmacol 19(10):1–16CrossRef Heckman PRA, Van Duinen MA, Bollen EPP, Nishi A, Wennogle LP, Blokland A et al (2016) Phosphodiesterase inhibition and regulation of dopaminergic frontal and striatal functioning: clinical implications. Int J Neuropsychopharmacol 19(10):1–16CrossRef
85.
go back to reference Kelly MP, Brandon NJ (2009) Differential function of phosphodiesterase families in the brain: gaining insights through the use of genetically modified animals. Prog Brain Res 179(C):67–73PubMedCrossRef Kelly MP, Brandon NJ (2009) Differential function of phosphodiesterase families in the brain: gaining insights through the use of genetically modified animals. Prog Brain Res 179(C):67–73PubMedCrossRef
86.
go back to reference Warnica W, Merico D, Costain G, Alfred SE, Wei J, Marshall CR et al (2015) Copy number variable microRNAs in schizophrenia and their neurodevelopmental gene targets. Biol Psychiatry 77(2):158PubMedCrossRef Warnica W, Merico D, Costain G, Alfred SE, Wei J, Marshall CR et al (2015) Copy number variable microRNAs in schizophrenia and their neurodevelopmental gene targets. Biol Psychiatry 77(2):158PubMedCrossRef
87.
go back to reference Han C, Cui K, Bi X, Wang L, Sun M, Yang L et al (2019) Association between polymorphism of the NEDD4 gene and cognitive dysfunction of schizophrenia patients in Chinese Han population. BMC Psychiatry. 19(1):405PubMedPubMedCentralCrossRef Han C, Cui K, Bi X, Wang L, Sun M, Yang L et al (2019) Association between polymorphism of the NEDD4 gene and cognitive dysfunction of schizophrenia patients in Chinese Han population. BMC Psychiatry. 19(1):405PubMedPubMedCentralCrossRef
88.
go back to reference Bi X, Cui K, Han C, Sun M, Wang L, Yang L et al (2015) Association of NEDD4 gene polymorphisms with schizophrenia and its clinical characteristics in Chinese Han population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 32(3):385–390PubMed Bi X, Cui K, Han C, Sun M, Wang L, Yang L et al (2015) Association of NEDD4 gene polymorphisms with schizophrenia and its clinical characteristics in Chinese Han population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 32(3):385–390PubMed
89.
go back to reference Lin A, Hou Q, Jarzylo L, Amato S, Gilbert J, Shang F et al (2011) Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking. J Neurochem 119(1):27–39PubMedPubMedCentralCrossRef Lin A, Hou Q, Jarzylo L, Amato S, Gilbert J, Shang F et al (2011) Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking. J Neurochem 119(1):27–39PubMedPubMedCentralCrossRef
90.
go back to reference Lord MS, Melrose J, Day AJ, Whitelock JM (2020) The inter-α-trypsin inhibitor family: versatile molecules in biology and pathology. J Histochem Cytochem 68(12):907–927PubMedPubMedCentralCrossRef Lord MS, Melrose J, Day AJ, Whitelock JM (2020) The inter-α-trypsin inhibitor family: versatile molecules in biology and pathology. J Histochem Cytochem 68(12):907–927PubMedPubMedCentralCrossRef
91.
go back to reference Glatt SJ, Stone WS, Nossova N, Liew CC, Seidman LJ, Tsuang MT (2011) Similarities and differences in peripheral blood gene expression signatures of individuals with schizophrenia and their first-degree biological relatives. Am J Med Genet B Neuropsychiatr Genet 156(8):869PubMedCentralCrossRef Glatt SJ, Stone WS, Nossova N, Liew CC, Seidman LJ, Tsuang MT (2011) Similarities and differences in peripheral blood gene expression signatures of individuals with schizophrenia and their first-degree biological relatives. Am J Med Genet B Neuropsychiatr Genet 156(8):869PubMedCentralCrossRef
93.
go back to reference Mahadevan J, Pathak AK, Vemula A, Nadella RK, Viswanath B, Jain S et al (2021) Analysis of whole exome sequencing in severe mental illness hints at selection of brain development and immune related genes. Sci Rep 11(1):1–10CrossRef Mahadevan J, Pathak AK, Vemula A, Nadella RK, Viswanath B, Jain S et al (2021) Analysis of whole exome sequencing in severe mental illness hints at selection of brain development and immune related genes. Sci Rep 11(1):1–10CrossRef
95.
go back to reference Li M, Huang L, Grigoroiu-Serbanescu M, Bergen SE, Landén M, Hultman CM et al (2016) Convergent lines of evidence support LRP8 as a susceptibility gene for psychosis. Mol Neurobiol 53(10):6608–6619PubMedCrossRef Li M, Huang L, Grigoroiu-Serbanescu M, Bergen SE, Landén M, Hultman CM et al (2016) Convergent lines of evidence support LRP8 as a susceptibility gene for psychosis. Mol Neurobiol 53(10):6608–6619PubMedCrossRef
96.
go back to reference Xiao X, Yu H, Li J, Wang L, Li L, Chang H et al (2020) Further evidence for the association between LRP8 and schizophrenia. Schizophr Res 215:499–505PubMedCrossRef Xiao X, Yu H, Li J, Wang L, Li L, Chang H et al (2020) Further evidence for the association between LRP8 and schizophrenia. Schizophr Res 215:499–505PubMedCrossRef
97.
go back to reference Huang Y, Todd N, Thathiah A (2017) The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention. Curr Opin Pharmacol 32:96–110PubMedCrossRef Huang Y, Todd N, Thathiah A (2017) The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention. Curr Opin Pharmacol 32:96–110PubMedCrossRef
98.
go back to reference Girgenti MJ, Nisenbaum LK, Bymaster F, Terwilliger R, Duman RS, Newton SS (2010) Antipsychotic induced gene regulation in multiple brain regions. J Neurochem 113(1):175PubMedPubMedCentralCrossRef Girgenti MJ, Nisenbaum LK, Bymaster F, Terwilliger R, Duman RS, Newton SS (2010) Antipsychotic induced gene regulation in multiple brain regions. J Neurochem 113(1):175PubMedPubMedCentralCrossRef
99.
go back to reference Zheng F, Yan H, Liu B, Yue W, Fan L, Liao J et al (2017) ALDH2 Glu504Lys confers susceptibility to schizophrenia and impacts hippocampal-prefrontal functional connectivity. Cereb Cortex 27(3):2034–2040PubMed Zheng F, Yan H, Liu B, Yue W, Fan L, Liao J et al (2017) ALDH2 Glu504Lys confers susceptibility to schizophrenia and impacts hippocampal-prefrontal functional connectivity. Cereb Cortex 27(3):2034–2040PubMed
101.
go back to reference Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Péer I et al (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460(7256):753–7PubMedPubMedCentralCrossRef Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Péer I et al (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460(7256):753–7PubMedPubMedCentralCrossRef
102.
go back to reference Smith IA, Knezevic BR, Ammann JU, Rhodes DA, Aw D, Palmer DB et al (2010) BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. J Immunol 184(7):3514–3525PubMedCrossRef Smith IA, Knezevic BR, Ammann JU, Rhodes DA, Aw D, Palmer DB et al (2010) BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. J Immunol 184(7):3514–3525PubMedCrossRef
103.
go back to reference Sarter K, Leimgruber E, Gobet F, Agrawal V, Dunand-Sauthier I, Barras E et al (2016) Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes. J Exp Med 213(2):177–187PubMedPubMedCentralCrossRef Sarter K, Leimgruber E, Gobet F, Agrawal V, Dunand-Sauthier I, Barras E et al (2016) Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes. J Exp Med 213(2):177–187PubMedPubMedCentralCrossRef
105.
go back to reference Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J et al (2012) Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human T-cell subset. Blood 120(11):2269–2279PubMedPubMedCentralCrossRef Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J et al (2012) Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human T-cell subset. Blood 120(11):2269–2279PubMedPubMedCentralCrossRef
106.
go back to reference Pape K, Tamouza R, Leboyer M, Zipp F (2019) Immunoneuropsychiatry—novel perspectives on brain disorders. Nat Rev Neurol 15(6):317–328PubMedCrossRef Pape K, Tamouza R, Leboyer M, Zipp F (2019) Immunoneuropsychiatry—novel perspectives on brain disorders. Nat Rev Neurol 15(6):317–328PubMedCrossRef
107.
go back to reference Debnath M (2015) Adaptive immunity in schizophrenia: functional implications of T cells in the etiology, course and treatment. J Neuroimmune Pharmacol 10(4):610–619PubMedCrossRef Debnath M (2015) Adaptive immunity in schizophrenia: functional implications of T cells in the etiology, course and treatment. J Neuroimmune Pharmacol 10(4):610–619PubMedCrossRef
108.
go back to reference van Kesteren CFMG, Gremmels H, de Witte LD, Hol EM, van Gool AR, Falkai PG et al (2017) Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 7(3):e1075PubMedPubMedCentralCrossRef van Kesteren CFMG, Gremmels H, de Witte LD, Hol EM, van Gool AR, Falkai PG et al (2017) Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 7(3):e1075PubMedPubMedCentralCrossRef
110.
go back to reference Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980PubMedPubMedCentralCrossRef Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980PubMedPubMedCentralCrossRef
111.
go back to reference Wang J, Hodes GE, Zhang H, Zhang S, Zhao W, Golden SA et al (2018) Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat Commun 9(1):477PubMedPubMedCentralCrossRef Wang J, Hodes GE, Zhang H, Zhang S, Zhao W, Golden SA et al (2018) Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat Commun 9(1):477PubMedPubMedCentralCrossRef
112.
go back to reference Ellwardt E, Pramanik G, Luchtman D, Novkovic T, Jubal ER, Vogt J et al (2018) Maladaptive cortical hyperactivity upon recovery from experimental autoimmune encephalomyelitis. Nat Neurosci 21(10):1392–1403PubMedCrossRef Ellwardt E, Pramanik G, Luchtman D, Novkovic T, Jubal ER, Vogt J et al (2018) Maladaptive cortical hyperactivity upon recovery from experimental autoimmune encephalomyelitis. Nat Neurosci 21(10):1392–1403PubMedCrossRef
114.
go back to reference Knight JG (1984) Is schizophrenia an autoimmune disease? A review. Methods Find Exp Clin Pharmacol 6(7):395–403PubMed Knight JG (1984) Is schizophrenia an autoimmune disease? A review. Methods Find Exp Clin Pharmacol 6(7):395–403PubMed
117.
go back to reference Radjavi A, Smirnov I, Kipnis J (2014) Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain Behav Immun 35:58–63PubMedCrossRef Radjavi A, Smirnov I, Kipnis J (2014) Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain Behav Immun 35:58–63PubMedCrossRef
118.
go back to reference Craddock RM, Lockstone HE, Rider DA, Wayland MT, Harris LJW, McKenna PJ et al (2007) Altered T-cell function in schizophrenia: a cellular model to investigate molecular disease mechanisms. PLoS ONE 2(8):e692PubMedPubMedCentralCrossRef Craddock RM, Lockstone HE, Rider DA, Wayland MT, Harris LJW, McKenna PJ et al (2007) Altered T-cell function in schizophrenia: a cellular model to investigate molecular disease mechanisms. PLoS ONE 2(8):e692PubMedPubMedCentralCrossRef
119.
go back to reference Riedel M, Spellmann I, Schwarz M, Strassnig M, Sikorski C, Moller H et al (2007) Decreased T cellular immune response in schizophrenic patients. J Psychiatr Res 41(1–2):3–7PubMedCrossRef Riedel M, Spellmann I, Schwarz M, Strassnig M, Sikorski C, Moller H et al (2007) Decreased T cellular immune response in schizophrenic patients. J Psychiatr Res 41(1–2):3–7PubMedCrossRef
120.
go back to reference Rajan TM, Bharadwaj B, Rajkumar RP, Adole PS (2018) Frequency and correlates of tardive dyskinesia in Indian patients with type I bipolar disorder. Asian J Psychiatr 32:92–98PubMedCrossRef Rajan TM, Bharadwaj B, Rajkumar RP, Adole PS (2018) Frequency and correlates of tardive dyskinesia in Indian patients with type I bipolar disorder. Asian J Psychiatr 32:92–98PubMedCrossRef
123.
go back to reference Tseng SCG (2016) HC-HA/PTX3 purified from amniotic membrane as novel regenerative matrix: insight into relationship between inflammation and regeneration. Investig Opthalmol Vis Sci. 57(5):ORSFh1CrossRef Tseng SCG (2016) HC-HA/PTX3 purified from amniotic membrane as novel regenerative matrix: insight into relationship between inflammation and regeneration. Investig Opthalmol Vis Sci. 57(5):ORSFh1CrossRef
124.
go back to reference Lutgens E, Lievens D, Beckers L, Wijnands E, Soehnlein O, Zernecke A et al (2010) Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 207(2):391–404PubMedPubMedCentralCrossRef Lutgens E, Lievens D, Beckers L, Wijnands E, Soehnlein O, Zernecke A et al (2010) Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 207(2):391–404PubMedPubMedCentralCrossRef
126.
go back to reference He H, Li W, Chen SY, Zhang S, Chen YT, Hayashida Y et al (2008) Suppression of activation and induction of apoptosis in RAW2647 cells by amniotic membrane extract. Investig Opthalmol Vis Sci 49(10):4468CrossRef He H, Li W, Chen SY, Zhang S, Chen YT, Hayashida Y et al (2008) Suppression of activation and induction of apoptosis in RAW2647 cells by amniotic membrane extract. Investig Opthalmol Vis Sci 49(10):4468CrossRef
127.
go back to reference McFadden EJ, Hargrove AE (2016) Biochemical methods to investigate lncRNA and the influence of lncRNA: protein complexes on chromatin. Biochemistry 55(11):1615–1630PubMedCrossRef McFadden EJ, Hargrove AE (2016) Biochemical methods to investigate lncRNA and the influence of lncRNA: protein complexes on chromatin. Biochemistry 55(11):1615–1630PubMedCrossRef
128.
go back to reference He H, Zhang S, Tighe S, Son J, Tseng SCG (2013) Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype. J Biol Chem 288(36):25792–25803PubMedPubMedCentralCrossRef He H, Zhang S, Tighe S, Son J, Tseng SCG (2013) Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype. J Biol Chem 288(36):25792–25803PubMedPubMedCentralCrossRef
132.
go back to reference Torihashi S, Ho M, Kawakubo Y, Komatsu K, Nagai M, Hirayama Y et al (2015) Acute and temporal expression of tumor necrosis factor (TNF)-α-stimulated Gene 6 Product, TSG6, in mesenchymal stem cells creates microenvironments required for their successful transplantation into muscle tissue. J Biol Chem 290(37):22771–22781PubMedPubMedCentralCrossRef Torihashi S, Ho M, Kawakubo Y, Komatsu K, Nagai M, Hirayama Y et al (2015) Acute and temporal expression of tumor necrosis factor (TNF)-α-stimulated Gene 6 Product, TSG6, in mesenchymal stem cells creates microenvironments required for their successful transplantation into muscle tissue. J Biol Chem 290(37):22771–22781PubMedPubMedCentralCrossRef
134.
go back to reference Zhang H, Wang Y, Hu Y, Zhu Y, Zhang T, Wang J et al (2019) Meta-analysis of cognitive function in Chinese first-episode schizophrenia: MATRICS Consensus Cognitive Battery (MCCB) profile of impairment. Gen Psychiatr 32(3):e100043PubMedPubMedCentralCrossRef Zhang H, Wang Y, Hu Y, Zhu Y, Zhang T, Wang J et al (2019) Meta-analysis of cognitive function in Chinese first-episode schizophrenia: MATRICS Consensus Cognitive Battery (MCCB) profile of impairment. Gen Psychiatr 32(3):e100043PubMedPubMedCentralCrossRef
135.
go back to reference Bilder RM, Goldman RS, Robinson D, Reiter G, Bell L, Bates JA et al (2000) Neuropsychology of first-episode schizophrenia: initial characterization and clinical correlates. Am J Psychiatry 157(4):549–559PubMedCrossRef Bilder RM, Goldman RS, Robinson D, Reiter G, Bell L, Bates JA et al (2000) Neuropsychology of first-episode schizophrenia: initial characterization and clinical correlates. Am J Psychiatry 157(4):549–559PubMedCrossRef
136.
go back to reference Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P et al (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry 51(2):124PubMedCrossRef Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P et al (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry 51(2):124PubMedCrossRef
137.
go back to reference Rund BR (1998) A review of longitudinal studies of cognitive functions in schizophrenia patients. Schizophr Bull 24(3):425–435PubMedCrossRef Rund BR (1998) A review of longitudinal studies of cognitive functions in schizophrenia patients. Schizophr Bull 24(3):425–435PubMedCrossRef
138.
go back to reference Cornblatt BA, Erlenmeyer-Kimling L (1985) Global attentional deviance as a marker of risk for schizophrenia: specificity and predictive validity. J Abnorm Psychol 94(4):470–486PubMedCrossRef Cornblatt BA, Erlenmeyer-Kimling L (1985) Global attentional deviance as a marker of risk for schizophrenia: specificity and predictive validity. J Abnorm Psychol 94(4):470–486PubMedCrossRef
139.
go back to reference Davidson M, Reichenberg A, Rabinowitz J, Weiser M, Kaplan Z, Mark M (1999) Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiatry 156(9):1328–1335PubMedCrossRef Davidson M, Reichenberg A, Rabinowitz J, Weiser M, Kaplan Z, Mark M (1999) Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiatry 156(9):1328–1335PubMedCrossRef
140.
go back to reference Trampush JW, Yang MLZ, Yu J, Knowles E, Davies G, Liewald DC et al (2017) GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol Psychiatry 22(3):336–45PubMedPubMedCentralCrossRef Trampush JW, Yang MLZ, Yu J, Knowles E, Davies G, Liewald DC et al (2017) GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol Psychiatry 22(3):336–45PubMedPubMedCentralCrossRef
141.
go back to reference Lencz T, Consortium C (2017) Gwas meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from The Cogent Consortium. Eur Neuropsychopharmacol 27:S493CrossRef Lencz T, Consortium C (2017) Gwas meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from The Cogent Consortium. Eur Neuropsychopharmacol 27:S493CrossRef
Metadata
Title
Significance of an altered lncRNA landscape in schizophrenia and cognition: clues from a case–control association study
Authors
Anirban Mukhopadhyay
Smita N. Deshpande
Triptish Bhatia
B. K. Thelma
Publication date
03-04-2023
Publisher
Springer Berlin Heidelberg
Keyword
Schizophrenia
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue 8/2023
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-023-01596-9

Other articles of this Issue 8/2023

European Archives of Psychiatry and Clinical Neuroscience 8/2023 Go to the issue