Skip to main content
Top
Published in: Critical Care 1/2021

Open Access 01-12-2021 | SARS-CoV-2 | Research

Positive end-expiratory pressure in COVID-19 acute respiratory distress syndrome: the heterogeneous effects

Authors: Davide Chiumello, Matteo Bonifazi, Tommaso Pozzi, Paolo Formenti, Giuseppe Francesco Sferrazza Papa, Gabriele Zuanetti, Silvia Coppola

Published in: Critical Care | Issue 1/2021

Login to get access

Abstract

Background

We hypothesized that as CARDS may present different pathophysiological features than classic ARDS, the application of high levels of end-expiratory pressure is questionable. Our first aim was to investigate the effects of 5–15 cmH2O of PEEP on partitioned respiratory mechanics, gas exchange and dead space; secondly, we investigated whether respiratory system compliance and severity of hypoxemia could affect the response to PEEP on partitioned respiratory mechanics, gas exchange and dead space, dividing the population according to the median value of respiratory system compliance and oxygenation. Thirdly, we explored the effects of an additional PEEP selected according to the Empirical PEEP-FiO2 table of the EPVent-2 study on partitioned respiratory mechanics and gas exchange in a subgroup of patients.

Methods

Sixty-one paralyzed mechanically ventilated patients with a confirmed diagnosis of SARS-CoV-2 were enrolled (age 60 [54–67] years, PaO2/FiO2 113 [79–158] mmHg and PEEP 10 [10–10] cmH2O). Keeping constant tidal volume, respiratory rate and oxygen fraction, two PEEP levels (5 and 15 cmH2O) were selected. In a subgroup of patients an additional PEEP level was applied according to an Empirical PEEP-FiO2 table (empirical PEEP). At each PEEP level gas exchange, partitioned lung mechanics and hemodynamic were collected.

Results

At 15 cmH2O of PEEP the lung elastance, lung stress and mechanical power were higher compared to 5 cmH2O. The PaO2/FiO2, arterial carbon dioxide and ventilatory ratio increased at 15 cmH2O of PEEP. The arterial–venous oxygen difference and central venous saturation were higher at 15 cmH2O of PEEP. Both the mechanics and gas exchange variables significantly increased although with high heterogeneity. By increasing the PEEP from 5 to 15 cmH2O, the changes in partitioned respiratory mechanics and mechanical power were not related to hypoxemia or respiratory compliance. The empirical PEEP was 18 ± 1 cmH2O. The empirical PEEP significantly increased the PaO2/FiO2 but also driving pressure, lung elastance, lung stress and mechanical power compared to 15 cmH2O of PEEP.

Conclusions

In COVID-19 ARDS during the early phase the effects of raising PEEP are highly variable and cannot easily be predicted by respiratory system characteristics, because of the heterogeneity of the disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Attaway AH, Scheraga RG, Bhimraj A, Biehl M, Hatipoğlu U. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ Br Med J. 2021;372:n436.CrossRef Attaway AH, Scheraga RG, Bhimraj A, Biehl M, Hatipoğlu U. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ Br Med J. 2021;372:n436.CrossRef
2.
go back to reference Radovanovic D, Coppola S, Franceschi E, Gervasoni F, Duscio E, Alberto D, et al. Mortality and clinical outcomes in patients with COVID-19 pneumonia treated with non-invasive respiratory support: a rapid review. J Crit Care. 2021;65:1–8.PubMedPubMedCentralCrossRef Radovanovic D, Coppola S, Franceschi E, Gervasoni F, Duscio E, Alberto D, et al. Mortality and clinical outcomes in patients with COVID-19 pneumonia treated with non-invasive respiratory support: a rapid review. J Crit Care. 2021;65:1–8.PubMedPubMedCentralCrossRef
3.
go back to reference Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. New Engl J Med. 2017;377:562–72.PubMedCrossRef Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. New Engl J Med. 2017;377:562–72.PubMedCrossRef
4.
go back to reference Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European Society of intensive care medicine/society of critical care medicine clinical practice guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–63.PubMedCrossRef Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European Society of intensive care medicine/society of critical care medicine clinical practice guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–63.PubMedCrossRef
5.
go back to reference Chiumello D, Brochard L, Marini JJ, Slutsky AS, Mancebo J, Ranieri VM, et al. Respiratory support in patients with acute respiratory distress syndrome: an expert opinion. Crit Care. 2017;21(1):240.PubMedPubMedCentralCrossRef Chiumello D, Brochard L, Marini JJ, Slutsky AS, Mancebo J, Ranieri VM, et al. Respiratory support in patients with acute respiratory distress syndrome: an expert opinion. Crit Care. 2017;21(1):240.PubMedPubMedCentralCrossRef
6.
go back to reference Sahetya SK, Goligher EC, Brower RG. Fifty years in research in ARDS: setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(11):1429–38.PubMedPubMedCentralCrossRef Sahetya SK, Goligher EC, Brower RG. Fifty years in research in ARDS: setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(11):1429–38.PubMedPubMedCentralCrossRef
7.
go back to reference Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42(2):252–64.PubMedCrossRef Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42(2):252–64.PubMedCrossRef
8.
go back to reference Kallet RH. The year in review: mechanical ventilation during the first year of the Covid-19 pandemic. Respir Care. 2021;respcare.09257. Kallet RH. The year in review: mechanical ventilation during the first year of the Covid-19 pandemic. Respir Care. 2021;respcare.09257.
9.
go back to reference Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Medicine. Springer Berlin Heidelberg; 2020. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Medicine. Springer Berlin Heidelberg; 2020.
10.
go back to reference Nasa P, Azoulay E, Khanna AK, Jain R, Gupta S, Javeri Y, et al. Expert consensus statements for the management of COVID-19-related acute respiratory failure using a Delphi method. Crit Care. 2021;25(1):1–17.CrossRef Nasa P, Azoulay E, Khanna AK, Jain R, Gupta S, Javeri Y, et al. Expert consensus statements for the management of COVID-19-related acute respiratory failure using a Delphi method. Crit Care. 2021;25(1):1–17.CrossRef
11.
go back to reference Chiumello D, Busana M, Coppola S, Romitti F, Formenti P, Bonifazi M, et al. Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Med. 2020;46(12):2187–96.PubMedPubMedCentralCrossRef Chiumello D, Busana M, Coppola S, Romitti F, Formenti P, Bonifazi M, et al. Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Med. 2020;46(12):2187–96.PubMedPubMedCentralCrossRef
12.
go back to reference Ball L, Robba C, Maiello L, Herrmann J, Gerard SE, Xin Y, et al. Computed tomography assessment of PEEP-induced alveolar recruitment in patients with severe COVID-19 pneumonia. Crit Care. 2021;25(1):1–10.CrossRef Ball L, Robba C, Maiello L, Herrmann J, Gerard SE, Xin Y, et al. Computed tomography assessment of PEEP-induced alveolar recruitment in patients with severe COVID-19 pneumonia. Crit Care. 2021;25(1):1–10.CrossRef
13.
go back to reference Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJJD. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–8.PubMedPubMedCentralCrossRef Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJJD. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–8.PubMedPubMedCentralCrossRef
14.
go back to reference Barton LM, Duval EJ, Stroberg E, Ghosh S. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;20:1–9. Barton LM, Duval EJ, Stroberg E, Ghosh S. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;20:1–9.
15.
go back to reference Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Correspondence Endothelial cell infection and endotheliitis in. Lancet. 2019;395(10234):1417–8.CrossRef Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Correspondence Endothelial cell infection and endotheliitis in. Lancet. 2019;395(10234):1417–8.CrossRef
16.
go back to reference Santamarina MG, Boisier D, Contreras R, Baque M, Volpacchio M, Beddings I. COVID-19: a hypothesis regarding the ventilation-perfusion mismatch. Crit Care. 2020;24(1):4–7.CrossRef Santamarina MG, Boisier D, Contreras R, Baque M, Volpacchio M, Beddings I. COVID-19: a hypothesis regarding the ventilation-perfusion mismatch. Crit Care. 2020;24(1):4–7.CrossRef
17.
go back to reference Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354(17):1775–86.PubMedCrossRef Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354(17):1775–86.PubMedCrossRef
18.
go back to reference Beitler JR, Sarge T, Banner-Goodspeed VM, Gong MN, Cook D, Novack V, et al. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-F io 2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: A. JAMA J Am Med Assoc. 2019;321(9):846–57.CrossRef Beitler JR, Sarge T, Banner-Goodspeed VM, Gong MN, Cook D, Novack V, et al. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-F io 2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: A. JAMA J Am Med Assoc. 2019;321(9):846–57.CrossRef
19.
go back to reference Chiumello D, Consonni D, Coppola S, Froio S, Crimella F. The occlusion tests and end-expiratory esophageal pressure: measurements and comparison in controlled and assisted ventilation. Ann Intensive Care. 2016;56:1–10. Chiumello D, Consonni D, Coppola S, Froio S, Crimella F. The occlusion tests and end-expiratory esophageal pressure: measurements and comparison in controlled and assisted ventilation. Ann Intensive Care. 2016;56:1–10.
20.
go back to reference Radermacher P, Maggiore SM, Mercat A. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(8):964–84.PubMedCrossRef Radermacher P, Maggiore SM, Mercat A. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(8):964–84.PubMedCrossRef
21.
go back to reference Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.PubMedCrossRef Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.PubMedCrossRef
22.
go back to reference Coppola S, Caccioppola A, Froio S, Formenti P, De Giorgis V, Galanti V, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care. 2020;24(1):1–10.CrossRef Coppola S, Caccioppola A, Froio S, Formenti P, De Giorgis V, Galanti V, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care. 2020;24(1):1–10.CrossRef
23.
go back to reference Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA J Am Med Assoc. 2020;323(16):1574–81.CrossRef Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA J Am Med Assoc. 2020;323(16):1574–81.CrossRef
24.
go back to reference Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;1–10. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;1–10.
25.
go back to reference Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med. 2020;48(8):1129–34.PubMedPubMedCentralCrossRef Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med. 2020;48(8):1129–34.PubMedPubMedCentralCrossRef
26.
go back to reference Beloncle FM, Pavlovsky B, Desprez C, Fage N, Olivier PY, Asfar P, et al. Recruitability and effect of PEEP in SARS-Cov-2-associated acute respiratory distress syndrome. Ann Intensive Care. 2020;10(1):55.PubMedPubMedCentralCrossRef Beloncle FM, Pavlovsky B, Desprez C, Fage N, Olivier PY, Asfar P, et al. Recruitability and effect of PEEP in SARS-Cov-2-associated acute respiratory distress syndrome. Ann Intensive Care. 2020;10(1):55.PubMedPubMedCentralCrossRef
27.
go back to reference Ball L, Robba C, Herrmann J, Gerard SE, Xin Y, Mandelli M, et al. Lung distribution of gas and blood volume in critically ill COVID-19 patients: a quantitative dual-energy computed tomography study. Crit Care. 2021;25(1):1–12.CrossRef Ball L, Robba C, Herrmann J, Gerard SE, Xin Y, Mandelli M, et al. Lung distribution of gas and blood volume in critically ill COVID-19 patients: a quantitative dual-energy computed tomography study. Crit Care. 2021;25(1):1–12.CrossRef
28.
go back to reference Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatment for different phenotypes ? Intensi. 2020;46(4):1099–102. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatment for different phenotypes ? Intensi. 2020;46(4):1099–102.
29.
go back to reference Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi SCD. COVID-19 Does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(10):1299–300.PubMedPubMedCentralCrossRef Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi SCD. COVID-19 Does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(10):1299–300.PubMedPubMedCentralCrossRef
30.
go back to reference Grasselli G, Cattaneo E, Florio G, Ippolito M, Zanella A, Cortegiani A, et al. Mechanical ventilation parameters in critically ill COVID-19 patients: a scoping review. Crit Care. 2021;25(1):1–11. Grasselli G, Cattaneo E, Florio G, Ippolito M, Zanella A, Cortegiani A, et al. Mechanical ventilation parameters in critically ill COVID-19 patients: a scoping review. Crit Care. 2021;25(1):1–11.
31.
go back to reference Haudebourg AF, Perier F, Tuffet S, De Prost N, Razazi K, Dessap AM, et al. Respiratory mechanics of COVID-19- versus Non-COVID-19-associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;202(2):287–90.PubMedPubMedCentralCrossRef Haudebourg AF, Perier F, Tuffet S, De Prost N, Razazi K, Dessap AM, et al. Respiratory mechanics of COVID-19- versus Non-COVID-19-associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;202(2):287–90.PubMedPubMedCentralCrossRef
32.
go back to reference Gattinoni L, Pesenti ABM. Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology. 1988;69(6):824–32.PubMedCrossRef Gattinoni L, Pesenti ABM. Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology. 1988;69(6):824–32.PubMedCrossRef
33.
go back to reference Malbouisson LM, Muller J-C, Constantin J-M, Lu Q, Puybasset L, Rouby J-J. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome [1] (multiple letters). Am J Respir Crit Care Med. 2002;165(4):551.CrossRef Malbouisson LM, Muller J-C, Constantin J-M, Lu Q, Puybasset L, Rouby J-J. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome [1] (multiple letters). Am J Respir Crit Care Med. 2002;165(4):551.CrossRef
34.
go back to reference Ziehr DR, Alladina J, Petri CR, Maley JH, Moskowitz A, Medoff BD, et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: A cohort study. Am J Respir Crit Care Med. 2020;201(12):1560–4.PubMedPubMedCentralCrossRef Ziehr DR, Alladina J, Petri CR, Maley JH, Moskowitz A, Medoff BD, et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: A cohort study. Am J Respir Crit Care Med. 2020;201(12):1560–4.PubMedPubMedCentralCrossRef
35.
go back to reference Laverdure F, Delaporte A, Bouteau A, Genty T, Decailliot F, Stéphan F. Impact of initial respiratory compliance in ventilated patients with acute respiratory distress syndrome related to COVID-19. Crit Care. 2020;24(412):1–4. Laverdure F, Delaporte A, Bouteau A, Genty T, Decailliot F, Stéphan F. Impact of initial respiratory compliance in ventilated patients with acute respiratory distress syndrome related to COVID-19. Crit Care. 2020;24(412):1–4.
36.
go back to reference Caironi P, Cressoni M, Chiumello D, Ranieri M, Quintel M, Russo SG, et al. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2010;181:578–86.PubMedCrossRef Caironi P, Cressoni M, Chiumello D, Ranieri M, Quintel M, Russo SG, et al. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2010;181:578–86.PubMedCrossRef
37.
go back to reference Suter PM, Fairley B, Isenberg M. Optimum End-Expiratory airway pressure in patients with acute pulmonari failure. N Engl J Med. 1975;292(6):284–9.PubMedCrossRef Suter PM, Fairley B, Isenberg M. Optimum End-Expiratory airway pressure in patients with acute pulmonari failure. N Engl J Med. 1975;292(6):284–9.PubMedCrossRef
38.
go back to reference Barthélémy R, Beaucoté V, Bordier R, Collet M, Le Gall A, Hong A, et al. Haemodynamic impact of positive end-expiratory pressure in SARS-CoV-2 acute respiratory distress syndrome: oxygenation versus oxygen delivery. Br J Anaesth. 2021;126(2):e70–2.PubMedCrossRef Barthélémy R, Beaucoté V, Bordier R, Collet M, Le Gall A, Hong A, et al. Haemodynamic impact of positive end-expiratory pressure in SARS-CoV-2 acute respiratory distress syndrome: oxygenation versus oxygen delivery. Br J Anaesth. 2021;126(2):e70–2.PubMedCrossRef
39.
go back to reference Dantzker DR, Lynch JP, Weg JG. Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest. 1980;77(5):636–42.PubMedCrossRef Dantzker DR, Lynch JP, Weg JG. Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest. 1980;77(5):636–42.PubMedCrossRef
40.
go back to reference Amato M, Meade MO, Slutsky AS, Brochard L, Costa ELVC, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. New Engl J Med J Med. 2015;372(8):747–55.CrossRef Amato M, Meade MO, Slutsky AS, Brochard L, Costa ELVC, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. New Engl J Med J Med. 2015;372(8):747–55.CrossRef
41.
go back to reference Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178(4):346–55.PubMedCrossRef Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178(4):346–55.PubMedCrossRef
42.
go back to reference Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–31.PubMedCrossRef Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–31.PubMedCrossRef
43.
go back to reference Bonny V, Janiak V, Spadaro S, Pinna A, Demoule A, Dres M. Correction to: Effect of PEEP decremental on respiratory mechanics, gas exchange, pulmonary regional ventilation, and hemodynamics in patients with SARS-Cov-2-associated Acute Respiratory Distress Syndrome. Crit Care. 2020;24(1):1–4. Bonny V, Janiak V, Spadaro S, Pinna A, Demoule A, Dres M. Correction to: Effect of PEEP decremental on respiratory mechanics, gas exchange, pulmonary regional ventilation, and hemodynamics in patients with SARS-Cov-2-associated Acute Respiratory Distress Syndrome. Crit Care. 2020;24(1):1–4.
44.
go back to reference Perier F, Tuffet S, Maraffi T, Alcala G, Victor M, Haudebourg AF, et al. Electrical impedance tomography to titrate positive end-expiratory pressure in COVID-19 acute respiratory distress syndrome. Crit Care. 2020;24(1):1–9.CrossRef Perier F, Tuffet S, Maraffi T, Alcala G, Victor M, Haudebourg AF, et al. Electrical impedance tomography to titrate positive end-expiratory pressure in COVID-19 acute respiratory distress syndrome. Crit Care. 2020;24(1):1–9.CrossRef
45.
go back to reference Tsolaki V, Siempos I, Magira E, Kokkoris S, Zakynthinos GE, Zakynthinos S. PEEP levels in COVID-19 pneumonia. Crit Care. 2020;24(1):1–2.CrossRef Tsolaki V, Siempos I, Magira E, Kokkoris S, Zakynthinos GE, Zakynthinos S. PEEP levels in COVID-19 pneumonia. Crit Care. 2020;24(1):1–2.CrossRef
46.
go back to reference Sella N, Zarantonello F, Andreatta G, Gagliardi V, Boscolo A, Navalesi P. Positive end-expiratory pressure titration in COVID-19 acute respiratory failure: electrical impedance tomography vs. PEEP/FiO2tables. Crit Care. 2020;24(1):5–7.CrossRef Sella N, Zarantonello F, Andreatta G, Gagliardi V, Boscolo A, Navalesi P. Positive end-expiratory pressure titration in COVID-19 acute respiratory failure: electrical impedance tomography vs. PEEP/FiO2tables. Crit Care. 2020;24(1):5–7.CrossRef
Metadata
Title
Positive end-expiratory pressure in COVID-19 acute respiratory distress syndrome: the heterogeneous effects
Authors
Davide Chiumello
Matteo Bonifazi
Tommaso Pozzi
Paolo Formenti
Giuseppe Francesco Sferrazza Papa
Gabriele Zuanetti
Silvia Coppola
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2021
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03839-4

Other articles of this Issue 1/2021

Critical Care 1/2021 Go to the issue